anadaptiveloopgainselectionforcleandeconvolutionalgorithm
文献类型:期刊论文
作者 | Zhang Li2; Xu Long1![]() |
刊名 | researchinastronomyandastrophysics
![]() |
出版日期 | 2019 |
卷号 | 19期号:6 |
ISSN号 | 1674-4527 |
英文摘要 | Radio interferometry significantly improves the resolution of observed images, and the final result also relies heavily on data recovery. The Cotton-Schwab CLEAN (CS-Clean) deconvolution approach is a widely used reconstruction algorithm in the field of radio synthesis imaging. However, parameter tuning for this algorithm has always been a difficult task. Here, its performance is improved by considering some internal characteristics of the data. From a mathematical point of view, a peak signal-to-noise-based (PSNRbased) method was introduced to optimize the step length of the steepest descent method in the recovery process.We also found that the loop gain curve in the new algorithmis a good indicator of parameter tuning. Tests show that the new algorithm can effectively solve the problem of oscillation for a large fixed loop gain and provides a more robust recovery. |
语种 | 英语 |
源URL | [http://ir.bao.ac.cn/handle/114a11/37856] ![]() |
专题 | 中国科学院国家天文台 |
作者单位 | 1.中国科学院国家天文台 2.贵州大学 3.中国科学院新疆天文台 |
推荐引用方式 GB/T 7714 | Zhang Li,Xu Long,Zhang Ming,et al. anadaptiveloopgainselectionforcleandeconvolutionalgorithm[J]. researchinastronomyandastrophysics,2019,19(6). |
APA | Zhang Li,Xu Long,Zhang Ming,&Wu Zhongzu.(2019).anadaptiveloopgainselectionforcleandeconvolutionalgorithm.researchinastronomyandastrophysics,19(6). |
MLA | Zhang Li,et al."anadaptiveloopgainselectionforcleandeconvolutionalgorithm".researchinastronomyandastrophysics 19.6(2019). |
入库方式: OAI收割
来源:国家天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。