中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
anadaptiveloopgainselectionforcleandeconvolutionalgorithm

文献类型:期刊论文

作者Zhang Li2; Xu Long1; Zhang Ming3; Wu Zhongzu2
刊名researchinastronomyandastrophysics
出版日期2019
卷号19期号:6
ISSN号1674-4527
英文摘要Radio interferometry significantly improves the resolution of observed images, and the final result also relies heavily on data recovery. The Cotton-Schwab CLEAN (CS-Clean) deconvolution approach is a widely used reconstruction algorithm in the field of radio synthesis imaging. However, parameter tuning for this algorithm has always been a difficult task. Here, its performance is improved by considering some internal characteristics of the data. From a mathematical point of view, a peak signal-to-noise-based (PSNRbased) method was introduced to optimize the step length of the steepest descent method in the recovery process.We also found that the loop gain curve in the new algorithmis a good indicator of parameter tuning. Tests show that the new algorithm can effectively solve the problem of oscillation for a large fixed loop gain and provides a more robust recovery.
语种英语
源URL[http://ir.bao.ac.cn/handle/114a11/37856]  
专题中国科学院国家天文台
作者单位1.中国科学院国家天文台
2.贵州大学
3.中国科学院新疆天文台
推荐引用方式
GB/T 7714
Zhang Li,Xu Long,Zhang Ming,et al. anadaptiveloopgainselectionforcleandeconvolutionalgorithm[J]. researchinastronomyandastrophysics,2019,19(6).
APA Zhang Li,Xu Long,Zhang Ming,&Wu Zhongzu.(2019).anadaptiveloopgainselectionforcleandeconvolutionalgorithm.researchinastronomyandastrophysics,19(6).
MLA Zhang Li,et al."anadaptiveloopgainselectionforcleandeconvolutionalgorithm".researchinastronomyandastrophysics 19.6(2019).

入库方式: OAI收割

来源:国家天文台

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。