asvmknnmethodforquasarstarclassification
文献类型:期刊论文
作者 | Peng Nanbo; Zhang Yanxia![]() ![]() |
刊名 | sciencechinaphysicsmechanicsastronomy
![]() |
出版日期 | 2013 |
卷号 | 56期号:6页码:1227 |
ISSN号 | 1674-7348 |
英文摘要 | We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys. |
语种 | 英语 |
源URL | [http://ir.bao.ac.cn/handle/114a11/51344] ![]() |
专题 | 光学部_LAMOST运行和发展中心 |
作者单位 | 中国科学院国家天文台 |
推荐引用方式 GB/T 7714 | Peng Nanbo,Zhang Yanxia,Zhao Yongheng. asvmknnmethodforquasarstarclassification[J]. sciencechinaphysicsmechanicsastronomy,2013,56(6):1227. |
APA | Peng Nanbo,Zhang Yanxia,&Zhao Yongheng.(2013).asvmknnmethodforquasarstarclassification.sciencechinaphysicsmechanicsastronomy,56(6),1227. |
MLA | Peng Nanbo,et al."asvmknnmethodforquasarstarclassification".sciencechinaphysicsmechanicsastronomy 56.6(2013):1227. |
入库方式: OAI收割
来源:国家天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。