中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Soil Moisture Content from GNSS Reflectometry Using Dielectric Permittivity from Fresnel Reflection Coefficients

文献类型:期刊论文

作者Calabia, Andres1,2; Molina, Inigo1,2; Jin, Shuanggen1,3
刊名REMOTE SENSING
出版日期2020
卷号12期号:1页码:21
关键词Soil Moisture Content (SMC) Global Navigation Satellite Systems Reflectometry (GNSS-R) CYGNSS Soil Moisture Active Passive (SMAP) Fresnel reflection coefficients
DOI10.3390/rs12010122
英文摘要Global Navigation Satellite Systems-Reflectometry (GNSS-R) has shown unprecedented advantages to sense Soil Moisture Content (SMC) with high spatial and temporal coverage, low cost, and under all-weather conditions. However, implementing an appropriated physical basis to estimate SMC from GNSS-R is still a challenge, while previous solutions were only based on direct comparisons, statistical regressions, or time-series analyses between GNSS-R observables and external SMC products. In this paper, we attempt to retrieve SMC from GNSS-R by estimating the dielectric permittivity from Fresnel reflection coefficients. We employ Cyclone GNSS (CYGNSS) data and effectively account for the effects of bare soil roughness (BSR) and vegetation optical depth by employing ICESat-2 (Ice, Cloud, and land Elevation Satellites 2) and/or SMAP (Soil Moisture Active Passive) products. The tests carried out with ICESat-2 BSR data have shown the high sensitivity in SMC retrieval to high BSR values, due to the high sensitivity of ICESat-2 to land surface microrelief. Our GNSS-R SMC estimates are validated by SMAP SMC products and the results provide an R-square of 0.6, Root Mean Squared Error (RMSE) of 0.05, and a zero p-value, for the 4568 test points evaluated at the eastern region of China during April 2019. The achieved results demonstrate the optimal capability and potential of this new method for converting reflectivity measurements from GNSS-R into Land Surface SMC estimates.
WOS关键词BISTATIC RADAR ; L-BAND ; MICROWAVE EMISSION ; GPS SIGNALS ; SCATTERING ; MODEL ; LAND ; RETRIEVAL ; ROUGHNESS ; CANOPIES
资助项目Strategic Priority Research Program Project of the Chinese Academy of Sciences[XDA23040100] ; Jiangsu Province Distinguished Professor Project[R2018T20] ; Talent Start-Up Funding project of NUIST[1411041901010] ; Startup Foundation for Introducing Talent of NUIST[2243141801036] ; R&D+I Program of the Universidad Politecnica de Madrid (ProgramaPropio UPM 2019)
WOS研究方向Remote Sensing
语种英语
WOS记录号WOS:000515391700122
出版者MDPI
资助机构Strategic Priority Research Program Project of the Chinese Academy of Sciences ; Strategic Priority Research Program Project of the Chinese Academy of Sciences ; Jiangsu Province Distinguished Professor Project ; Jiangsu Province Distinguished Professor Project ; Talent Start-Up Funding project of NUIST ; Talent Start-Up Funding project of NUIST ; Startup Foundation for Introducing Talent of NUIST ; Startup Foundation for Introducing Talent of NUIST ; R&D+I Program of the Universidad Politecnica de Madrid (ProgramaPropio UPM 2019) ; R&D+I Program of the Universidad Politecnica de Madrid (ProgramaPropio UPM 2019) ; Strategic Priority Research Program Project of the Chinese Academy of Sciences ; Strategic Priority Research Program Project of the Chinese Academy of Sciences ; Jiangsu Province Distinguished Professor Project ; Jiangsu Province Distinguished Professor Project ; Talent Start-Up Funding project of NUIST ; Talent Start-Up Funding project of NUIST ; Startup Foundation for Introducing Talent of NUIST ; Startup Foundation for Introducing Talent of NUIST ; R&D+I Program of the Universidad Politecnica de Madrid (ProgramaPropio UPM 2019) ; R&D+I Program of the Universidad Politecnica de Madrid (ProgramaPropio UPM 2019) ; Strategic Priority Research Program Project of the Chinese Academy of Sciences ; Strategic Priority Research Program Project of the Chinese Academy of Sciences ; Jiangsu Province Distinguished Professor Project ; Jiangsu Province Distinguished Professor Project ; Talent Start-Up Funding project of NUIST ; Talent Start-Up Funding project of NUIST ; Startup Foundation for Introducing Talent of NUIST ; Startup Foundation for Introducing Talent of NUIST ; R&D+I Program of the Universidad Politecnica de Madrid (ProgramaPropio UPM 2019) ; R&D+I Program of the Universidad Politecnica de Madrid (ProgramaPropio UPM 2019) ; Strategic Priority Research Program Project of the Chinese Academy of Sciences ; Strategic Priority Research Program Project of the Chinese Academy of Sciences ; Jiangsu Province Distinguished Professor Project ; Jiangsu Province Distinguished Professor Project ; Talent Start-Up Funding project of NUIST ; Talent Start-Up Funding project of NUIST ; Startup Foundation for Introducing Talent of NUIST ; Startup Foundation for Introducing Talent of NUIST ; R&D+I Program of the Universidad Politecnica de Madrid (ProgramaPropio UPM 2019) ; R&D+I Program of the Universidad Politecnica de Madrid (ProgramaPropio UPM 2019)
源URL[http://ir.bao.ac.cn/handle/114a11/54360]  
专题中国科学院国家天文台
通讯作者Molina, Inigo
作者单位1.Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
2.Univ Politecn Madrid, Sch Land Surveying Geodesy & Mapping Engn, South Campus, Madrid 28031, Spain
3.Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China
推荐引用方式
GB/T 7714
Calabia, Andres,Molina, Inigo,Jin, Shuanggen. Soil Moisture Content from GNSS Reflectometry Using Dielectric Permittivity from Fresnel Reflection Coefficients[J]. REMOTE SENSING,2020,12(1):21.
APA Calabia, Andres,Molina, Inigo,&Jin, Shuanggen.(2020).Soil Moisture Content from GNSS Reflectometry Using Dielectric Permittivity from Fresnel Reflection Coefficients.REMOTE SENSING,12(1),21.
MLA Calabia, Andres,et al."Soil Moisture Content from GNSS Reflectometry Using Dielectric Permittivity from Fresnel Reflection Coefficients".REMOTE SENSING 12.1(2020):21.

入库方式: OAI收割

来源:国家天文台

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。