Predicting the 25th solar cycle using deep learning methods based on sunspot area data
文献类型:期刊论文
作者 | Li, Qiang1; Wan, Miao1; Zeng, Shu-Guang1; Zheng, Sheng1; Deng LH(邓林华)2![]() |
刊名 | RESEARCH IN ASTRONOMY AND ASTROPHYSICS
![]() |
出版日期 | 2021-08 |
卷号 | 21期号:7 |
关键词 | Sun activity Sun solar cycle prediction Sun sunspot area Method deep neural network |
ISSN号 | 1674-4527 |
DOI | 10.1088/1674-4527/21/7/184 |
产权排序 | 第2完成单位 |
文献子类 | Article |
英文摘要 | It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-short-term memory (LSTM) and neural network autoregression (NNAR) deep learning methods to predict the upcoming 25th solar cycle using the sunspot area (SSA) data during the period of May 1874 to December 2020. Our results show that the 25th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum sunspot area of 3115 +/- 401 and the cycle reaching its peak in October 2022 by using the LSTM method. It also shows that deep learning algorithms perform better than the other commonly used methods and have high application value. |
学科主题 | 天文学 ; 太阳与太阳系 ; 计算机科学技术 ; 人工智能 |
URL标识 | 查看原文 |
出版地 | 20A DATUN RD, CHAOYANG, BEIJING, 100012, PEOPLES R CHINA |
资助项目 | National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U2031202] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U1731124] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U1531247] ; special foundation work of the Ministry of Science and Technology of the People's Republic of China[2014FY120300] ; 13th Five-year Informatization Plan of Chinese Academy of Sciences[XXH13505-04] |
WOS研究方向 | Astronomy & Astrophysics |
语种 | 英语 |
WOS记录号 | WOS:000691271400001 |
出版者 | NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES |
资助机构 | National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U2031202, U1731124, U1531247] ; special foundation work of the Ministry of Science and Technology of the People's Republic of China[2014FY120300] ; 13th Five-year Informatization Plan of Chinese Academy of Sciences[XXH13505-04] |
版本 | 出版稿 |
源URL | [http://ir.ynao.ac.cn/handle/114a53/24558] ![]() |
专题 | 云南天文台_抚仙湖太阳观测站 |
通讯作者 | Zeng, Shu-Guang |
作者单位 | 1.College of Science, China Three Gorges University, Yichang 443002, China; 2.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China |
推荐引用方式 GB/T 7714 | Li, Qiang,Wan, Miao,Zeng, Shu-Guang,et al. Predicting the 25th solar cycle using deep learning methods based on sunspot area data[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2021,21(7). |
APA | Li, Qiang,Wan, Miao,Zeng, Shu-Guang,Zheng, Sheng,&Deng LH.(2021).Predicting the 25th solar cycle using deep learning methods based on sunspot area data.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,21(7). |
MLA | Li, Qiang,et al."Predicting the 25th solar cycle using deep learning methods based on sunspot area data".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 21.7(2021). |
入库方式: OAI收割
来源:云南天文台
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。