中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
EFCNet: Ensemble Full Convolutional Network for Semantic Segmentation of High-Resolution Remote Sensing Images

文献类型:期刊论文

作者Chen, Li1; Dou, Xin1; Peng, Jian1; Li, Wenbo2; Sun, Bingyu2; Li, Haifeng1
刊名IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
出版日期2021-05-04
关键词Convolution Feature extraction Kernel Training Remote sensing Image segmentation Spatial resolution Convolutional neural network (CNN) ensemble learning remote sensing semantic segmentation
ISSN号1545-598X
DOI10.1109/LGRS.2021.3076093
通讯作者Li, Haifeng(lihaifeng@csu.edu.cn)
英文摘要Convolutional neural networks (CNNs) have achieved remarkable results in semantic segmentation of high-resolution remote sensing images (HRRSIs). However, the scales and textures of HRRSIs are diverse, which makes it difficult for a fixed-layer CNN to obtain rich features. In this regard, we propose an end-to-end ensemble fully convolutional network (EFCNet), which mainly includes two modules: the adaptive fusion module (AFM) and the separable convolutional module (SCM). The AFM can fuse features of different scales based on ensemble learning, whereas the SCM can reduce the complexity of the model under multifeature fusion. In the experiment, we use UNet and PSPNet to verify the framework on the ISPRS Vaihingen and Potsdam datasets. The experimental results show that the EFCNet can effectively improve the final segmentation performance and reduce the complexity of the ensemble model.
资助项目National Natural Science Foundation of China[41871302] ; National Natural Science Foundation of China[61773360] ; National Natural Science Foundation of China[41871364]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000732338300001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/126924]  
专题中国科学院合肥物质科学研究院
通讯作者Li, Haifeng
作者单位1.Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
2.Chinese Acad Sci, Inst Intelligent Machines, Hefei 230031, Peoples R China
推荐引用方式
GB/T 7714
Chen, Li,Dou, Xin,Peng, Jian,et al. EFCNet: Ensemble Full Convolutional Network for Semantic Segmentation of High-Resolution Remote Sensing Images[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2021.
APA Chen, Li,Dou, Xin,Peng, Jian,Li, Wenbo,Sun, Bingyu,&Li, Haifeng.(2021).EFCNet: Ensemble Full Convolutional Network for Semantic Segmentation of High-Resolution Remote Sensing Images.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS.
MLA Chen, Li,et al."EFCNet: Ensemble Full Convolutional Network for Semantic Segmentation of High-Resolution Remote Sensing Images".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS (2021).

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。