Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment
文献类型:期刊论文
作者 | Liu, Shangshi2; Shen, Haihua2; Chen, Songchao3,7; Zhao, Xia; Biswas, Asim6; Jia, Xiaolin5; Shi, Zhou5; Fang, Jingyun2,4![]() |
刊名 | GEODERMA
![]() |
出版日期 | 2019 |
卷号 | 348页码:37-44 |
关键词 | China's forest Cubist model Soil organic carbon Visible-near-infrared spectroscopy |
ISSN号 | 0016-7061 |
DOI | 10.1016/j.geoderma.2019.04.003 |
文献子类 | Article |
英文摘要 | Large-scale soil organic carbon (SOC) stock assessment is expensive as a large number of samples must be collected and then their time-consuming measurements must be made in the laboratory. Previous studies have shown that visible-near-infrared reflectance (vis-NIR) spectroscopy can quickly predict SOC content at a low cost. However, the application of this method at the large scale remains challenging due to the high spatial heterogeneity of SOC and the spatially dependent relationships of soil spectra and SOC content. Here, we conducted large-scale soil sampling across China's forests and established the Chinese forest soil spectral library (CFSSL) by measuring SOC content and scanning the vis-NIR reflectance of 11, 213 soil samples. Compared with the traditional global partial least squares regression (PLSR) modeling method (R-2 = 0.75, RPIQ = 1.95), the clustering by fast research and find of density peak in combination with the Cubist model significantly improved the prediction ability of SOC content (R-2 = 0.96, RPIQ = 5.83). This study provided a cost-efficient spectroscopic methodology, including measurement and prediction modeling, for large-scale SOC estimation. |
学科主题 | Soil Science |
出版地 | AMSTERDAM |
电子版国际标准刊号 | 1872-6259 |
WOS关键词 | LEAST-SQUARE REGRESSION ; LOCAL SCALE ; PREDICTION ; MATTER ; CHEMISTRY ; DYNAMICS |
WOS研究方向 | Agriculture |
语种 | 英语 |
WOS记录号 | WOS:000470042500004 |
出版者 | ELSEVIER |
资助机构 | Key Research Program of Frontier Sciences, CAS [QYZDY-SSW-SMC011] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [31330012] ; National Key Research and Development Program [2017YFC0503901] |
源URL | [http://ir.ibcas.ac.cn/handle/2S10CLM1/19554] ![]() |
专题 | 植被与环境变化国家重点实验室 |
作者单位 | 1.Peking Univ, Minist Educ, Inst Ecol, Key Lab Earth Surface Proc, Beijing 100871, Peoples R China 2.Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Zhejiang Univ, Coll Environm & Resource Sci, Inst Appl Remote Sensing & Informat Technol, Hangzhou 310058, Zhejiang, Peoples R China 5.Univ Guelph, Sch Environm Sci, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada 6.Agrocampus Ouest, INRA, SAS, F-35042 Rennes, France 7.INRA, Unite InfoSol, F-45075 Orleans, France |
推荐引用方式 GB/T 7714 | Liu, Shangshi,Shen, Haihua,Chen, Songchao,et al. Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment[J]. GEODERMA,2019,348:37-44. |
APA | Liu, Shangshi.,Shen, Haihua.,Chen, Songchao.,Zhao, Xia.,Biswas, Asim.,...&Fang, Jingyun.(2019).Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment.GEODERMA,348,37-44. |
MLA | Liu, Shangshi,et al."Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment".GEODERMA 348(2019):37-44. |
入库方式: OAI收割
来源:植物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。