中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Mixed Semantic Features Model for Chinese NER with Characters and Words

文献类型:会议论文

作者Chang, Ning3; Zhong, Jiang2,3; Li, Qing3; Zhu, Jiang1
出版日期2020-04
会议日期April 14 - 17, 2020
会议地点Lisbon, Portugal
关键词Chinese Named Entity Recognition Self-attention Mixed Semantic Feature Entity Boundary Segmentation
期号v 12035
DOI10.1007/978-3-030-45439-5_24
页码356-368
英文摘要

Named Entity Recognition (NER) is an essential part of many natural language processing (NLP) tasks. The existing Chinese NER methods are mostly based on word segmentation, or use the character sequences as input. However, using a single granularity representation would suffer from the problems of out-of-vocabulary and word segmentation errors, and the semantic content is relatively simple. In this paper, we introduce the self-attention mechanism into the BiLSTM-CRF neural network structure for Chinese named entity recognition with two embedding. Different from other models, our method combines character and word features at the sequence level, and the attention mechanism computes similarity on the total sequence consisted of characters and words. The character semantic information and the structure of words work together to improve the accuracy of word boundary segmentation and solve the problem of long-phrase combination. We validate our model on MSRA andWeibo corpora, and experiments demonstrate that our model can significantly improve the performance of the Chinese NER task.

会议录Lecture Notes in Computer Science, v 12035 LNCS,  2020, Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Proceedings
会议录出版者Springer
语种英语
URL标识查看原文
源URL[http://ir.las.ac.cn/handle/12502/11771]  
专题文献情报中心_中国科学院成都文献情报中心_信息服务部
通讯作者Zhong, Jiang
作者单位1.Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
2.Key Laboratory of Dependable Service Computing in Cyber Physical Society, Chongqing University, Chongqing 400044, People’s Republic of China
3.Chongqing University, Chongqing 400044, People’s Republic of China
推荐引用方式
GB/T 7714
Chang, Ning,Zhong, Jiang,Li, Qing,et al. A Mixed Semantic Features Model for Chinese NER with Characters and Words[C]. 见:. Lisbon, Portugal. April 14 - 17, 2020.

入库方式: OAI收割

来源:文献情报中心

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。