中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning efficient text-to-image synthesis via interstage cross-sample similarity distillation

文献类型:期刊论文

作者Mao, Fengling1,2; Ma, Bingpeng3; Chang, Hong2,3; Shan, Shiguang2,3,4; Chen, Xilin2,3
刊名SCIENCE CHINA-INFORMATION SCIENCES
出版日期2021
卷号64期号:2页码:12
关键词generative adversarial network (GAN) text-to-image synthesis knowledge distillation
ISSN号1674-733X
DOI10.1007/s11432-020-2900-x
英文摘要For a given text, previous text-to-image synthesis methods commonly utilize a multistage generation model to produce images with high resolution in a coarse-to-fine manner. However, these methods ignore the interaction among stages, and they do not constrain the consistent cross-sample relations of images generated in different stages. These deficiencies result in inefficient generation and discrimination. In this study, we propose an interstage cross-sample similarity distillation model based on a generative adversarial network (GAN) for learning efficient text-to-image synthesis. To strengthen the interaction among stages, we achieve interstage knowledge distillation from the refined stage to the coarse stages with novel interstage cross-sample similarity distillation blocks. To enhance the constraint on the cross-sample relations of the images generated at different stages, we conduct cross-sample similarity distillation among the stages. Extensive experiments on the Oxford-102 and Caltech-UCSD Birds-200-2011 (CUB) datasets show that our model generates visually pleasing images and achieves quantitatively comparable performance with state-of-the-art methods.
资助项目National Natural Science Foundation of China[61876171] ; National Natural Science Foundation of China[61976203] ; Fundamental Research Funds for the Central Universities
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000595379700001
出版者SCIENCE PRESS
源URL[http://119.78.100.204/handle/2XEOYT63/15959]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ma, Bingpeng
作者单位1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Chinese Acad Sci CAS, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Mao, Fengling,Ma, Bingpeng,Chang, Hong,et al. Learning efficient text-to-image synthesis via interstage cross-sample similarity distillation[J]. SCIENCE CHINA-INFORMATION SCIENCES,2021,64(2):12.
APA Mao, Fengling,Ma, Bingpeng,Chang, Hong,Shan, Shiguang,&Chen, Xilin.(2021).Learning efficient text-to-image synthesis via interstage cross-sample similarity distillation.SCIENCE CHINA-INFORMATION SCIENCES,64(2),12.
MLA Mao, Fengling,et al."Learning efficient text-to-image synthesis via interstage cross-sample similarity distillation".SCIENCE CHINA-INFORMATION SCIENCES 64.2(2021):12.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。