中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Geometric moment invariants to spatial transform and N-fold symmetric blur

文献类型:期刊论文

作者Mo, Hanlin1,2; Hao, Hongxiang1,2; Li, Hua1,2
刊名PATTERN RECOGNITION
出版日期2021-07-01
卷号115页码:14
关键词Blurred image Blur invariants Moment invariants Spatial transform N-fold symmetry Object recognition Template matching
ISSN号0031-3203
DOI10.1016/j.patcog.2021.107887
英文摘要In this paper, we focus on the derivation of blur moment invariants. Blur moment invariants are im-age moment-based features, which preserve their values when the image is convolved by a point-spread function (PSF). Suppose a PSF has N-fold rotational symmetry, we prove its geometric moments of the same order are linearly dependent. Depending on this property, a new approach is proposed to deter-mine whether an existing similarity or affine moment invariant also has invariance to N-fold symmetric blur. Unlike earlier work, this method is not based on complicated operators and construction formu-las. We use it to analyse classical moment-based features, and surprisingly find that five of Hu moment invariants are naturally invariant to N-fold symmetric blur. Meanwhile, we first prove the existence of moment invariants to both affine transform and N-fold symmetric blur. The experiments using synthetic and real blur image datasets are carried out to test these expectations. And the results show that five Hu moment invariants outperform some widely used blur moment invariants and non-moment image features in image retrieval, classification and template matching. (c) 2021 Elsevier Ltd. All rights reserved.
资助项目National Key R&D Program of China[2017YFB1002703] ; National Key Basic Research Planning Project of China[2015CB554507] ; National Natural Science Foundation of China[61227802] ; National Natural Science Foundation of China[61379082]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000639745600008
出版者ELSEVIER SCI LTD
源URL[http://119.78.100.204/handle/2XEOYT63/16654]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Mo, Hanlin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Mo, Hanlin,Hao, Hongxiang,Li, Hua. Geometric moment invariants to spatial transform and N-fold symmetric blur[J]. PATTERN RECOGNITION,2021,115:14.
APA Mo, Hanlin,Hao, Hongxiang,&Li, Hua.(2021).Geometric moment invariants to spatial transform and N-fold symmetric blur.PATTERN RECOGNITION,115,14.
MLA Mo, Hanlin,et al."Geometric moment invariants to spatial transform and N-fold symmetric blur".PATTERN RECOGNITION 115(2021):14.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。