中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Data-Driven Optimization for Cooperative Edge Service Provisioning With Demand Uncertainty

文献类型:期刊论文

作者Li, Liang1,2; Shi, Dian3; Hou, Ronghui1,2; Li, Xuanheng4; Wang, Jie4,5; Li, Hui2; Pan, Miao3
刊名IEEE INTERNET OF THINGS JOURNAL
出版日期2021-03-15
卷号8期号:6页码:4317-4328
关键词Uncertainty Optimization Edge computing Servers Robustness Processor scheduling Internet of Things Data-driven optimization demand uncertainty edge computing resource provisioning
ISSN号2327-4662
DOI10.1109/JIOT.2020.3028242
英文摘要Multiaccess edge computing (MEC) empowers service providers (SPs) to run applications on the shared edge platforms in close proximity to mobile users, enabling ultralow latency access to a wide variety of cloud services. However, how to decide the amount of edge computing resources to rent for mobile service provisioning poses great challenges as the service demand is unknown to SPs a priori and may vary across the geographically distributed edge sites spatially and temporally. The resource rental decision also significantly affects SPs' deploying profits since it is critical for service deployment and workload assignment. This article investigates the service provisioning problem in a cooperative edge computing system under service demand uncertainty. We develop a holistic solution to make two-timescale decisions on edge resource rental and workload assignment to maximize SP's deploying profits. Briefly, we exploit historical service demand traces at the edge sites to characterize the uncertainty in a data-driven manner and formulate the edge service provisioning problem into a two-stage risk-averse optimization. To solve the formulated problem without compromising the data privacy, we propose an algorithm integrating Benders decomposition (BD) and alternating direction method of multipliers (ADMMs), which enables each edge site to keep the historical traces locally and participate in the optimization process. Based on real-world data sets, extensive simulations are conducted to validate the efficacy of our scheme.
资助项目National Natural Science Foundation of China[61571351] ; National Natural Science Foundation of China[61801080] ; National Natural Science Foundation of China[62071081] ; State Key Laboratory of Computer Architecture (ICT, CAS)[CARCH201904] ; Shaanxi Science Foundation of China[2019ZDLGY12-08] ; 111 Project[B16037] ; 111 Project[ZD2004] ; U.S. National Science Foundation[US CNS-1646607] ; U.S. National Science Foundation[CNS-1801925] ; U.S. National Science Foundation[CNS-2029569] ; Fundamental Research Funds for the Central Universities[DUT20RC(4)007] ; Doctoral Research Initiation Fund of Liaoning Province[2019-BS-049]
WOS研究方向Computer Science ; Engineering ; Telecommunications
语种英语
WOS记录号WOS:000626569700017
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/16750]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Hou, Ronghui
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100080, Peoples R China
2.Xidian Univ, Sch Cyber Engn, Xian 710071, Peoples R China
3.Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
4.Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
5.Dalian Maritime Univ, Sch Informat Sci & Technol, Dalian 116026, Peoples R China
推荐引用方式
GB/T 7714
Li, Liang,Shi, Dian,Hou, Ronghui,et al. Data-Driven Optimization for Cooperative Edge Service Provisioning With Demand Uncertainty[J]. IEEE INTERNET OF THINGS JOURNAL,2021,8(6):4317-4328.
APA Li, Liang.,Shi, Dian.,Hou, Ronghui.,Li, Xuanheng.,Wang, Jie.,...&Pan, Miao.(2021).Data-Driven Optimization for Cooperative Edge Service Provisioning With Demand Uncertainty.IEEE INTERNET OF THINGS JOURNAL,8(6),4317-4328.
MLA Li, Liang,et al."Data-Driven Optimization for Cooperative Edge Service Provisioning With Demand Uncertainty".IEEE INTERNET OF THINGS JOURNAL 8.6(2021):4317-4328.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。