Graph Regularized Encoder-Decoder Networks for Image Representation Learning
文献类型:期刊论文
作者 | Yang, Shijie1,2; Li, Liang3; Wang, Shuhui3; Zhang, Weigang4,5; Huang, Qingming3; Tian, Qi6 |
刊名 | IEEE TRANSACTIONS ON MULTIMEDIA
![]() |
出版日期 | 2021 |
卷号 | 23页码:3124-3136 |
关键词 | Laplace equations Visualization Manifolds Image reconstruction Task analysis Decoding Semantics Auto-encoder encoder-decoder graph regularizer image representation learning |
ISSN号 | 1520-9210 |
DOI | 10.1109/TMM.2020.3020697 |
英文摘要 | Image representation learning with encoder-decoder networks plays a fundamental role in multimedia processing. Recent findings show that traditional encoder-decoders can be negatively affected by small visual perturbations. The learned non-smooth feature embedding cannot guarantee to capture semantic-meaningful geometric distance between visually-similar image samples. Inspired by manifold learning, we propose a graph regularized encoder-decoder network, which can preserve local geometric information of the code embedding space. More discriminative feature embedding is learnt to attain both high-level image semantic and neighbor relationship of image clusters. The proposed graph regularizer is formulated upon multi-layer perceptions. It uses the local invariance principle to explicitly reconstruct the geometric similarity graph. Theoretical analysis is provided to show the connection between our deep regularizer and traditional graph Laplacian regularizer. Practically, the network complexity is alleviated by anchor based bipartite graph, and this leverages our method into large scale scenario. Experimental evaluations show the comparable results of the proposed method with state-of-the-art models on different tasks. |
资助项目 | National Key R&D Program of China[2018YFE0303104] ; National Natural Science Foundation of China[61771457] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61931008] ; National Natural Science Foundation of China[61772494] ; National Natural Science Foundation of China[61836002] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] |
WOS研究方向 | Computer Science ; Telecommunications |
语种 | 英语 |
WOS记录号 | WOS:000698902000014 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://119.78.100.204/handle/2XEOYT63/17071] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Li, Liang |
作者单位 | 1.Univ Chinese Acad Sci UCAS, Sch Comp Sci & Technol, Beijing 101408, Peoples R China 2.UCAS, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 4.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China 5.Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100049, Peoples R China 6.Huawei Noahs Ark Lab, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Shijie,Li, Liang,Wang, Shuhui,et al. Graph Regularized Encoder-Decoder Networks for Image Representation Learning[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2021,23:3124-3136. |
APA | Yang, Shijie,Li, Liang,Wang, Shuhui,Zhang, Weigang,Huang, Qingming,&Tian, Qi.(2021).Graph Regularized Encoder-Decoder Networks for Image Representation Learning.IEEE TRANSACTIONS ON MULTIMEDIA,23,3124-3136. |
MLA | Yang, Shijie,et al."Graph Regularized Encoder-Decoder Networks for Image Representation Learning".IEEE TRANSACTIONS ON MULTIMEDIA 23(2021):3124-3136. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。