中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Incorporating explicit syntactic dependency for aspect level sentiment classification

文献类型:期刊论文

作者Ke, Wenjun1,2; Gao, Jinhua1; Shen, Huawei1,2; Cheng, Xueqi1
刊名NEUROCOMPUTING
出版日期2021-10-07
卷号456页码:394-406
关键词Sentiment classification Syntactic dependency Attention network
ISSN号0925-2312
DOI10.1016/j.neucom.2021.05.078
英文摘要Aspect level sentiment classification aims to extract fine-grained sentiment expressed towards specific aspects from a sentence. The key to this task lies in connecting aspects and their respective sentiment contexts. Existing methods measure the dependency weights between aspects and context words via either the semantic similarity between words captured by attention mechanism or the structural proximity between words in syntactic structures. However, methods in both groups fail to fully exploit explicit syntactic dependency, which we argue should be critical to identify sentiment contexts. In this paper, we propose a novel syntactic-dependency-based attention network (SDATT) to incorporate explicit syntactic dependency for aspect level sentiment classification. SDATT first models the dependency path between each word and the aspect to characterize aspect-oriented syntactic representation of each word. The generated syntactic representations are later fed into the attention layer to help infer the dependency weights for sentiment prediction. Experimental results on five benchmark datasets show the superior performance of the proposed model over state-of-the-art baselines. (c) 2021 Elsevier B.V. All rights reserved.
资助项目Natural Science Foundation of China[62002347] ; Natural Science Foundation of China[91746301] ; Beijing Academy of Artificial Intelligence (BAAI) ; K.C. Wong Education Foundation
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000684998100017
出版者ELSEVIER
源URL[http://119.78.100.204/handle/2XEOYT63/17236]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Jinhua
作者单位1.Chinese Acad Sci, Inst Comp Technol, Data Intelligence Syst Res Ctr, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Ke, Wenjun,Gao, Jinhua,Shen, Huawei,et al. Incorporating explicit syntactic dependency for aspect level sentiment classification[J]. NEUROCOMPUTING,2021,456:394-406.
APA Ke, Wenjun,Gao, Jinhua,Shen, Huawei,&Cheng, Xueqi.(2021).Incorporating explicit syntactic dependency for aspect level sentiment classification.NEUROCOMPUTING,456,394-406.
MLA Ke, Wenjun,et al."Incorporating explicit syntactic dependency for aspect level sentiment classification".NEUROCOMPUTING 456(2021):394-406.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。