睡眠-觉醒节律紊乱下注意诱发脑电特征分析与识别
文献类型:期刊论文
作者 | 邵舒羽2; 吴锦涛3; 周前祥3; 柳忠起3; 张立伟1 |
刊名 | 航天医学与医学工程
![]() |
出版日期 | 2021 |
卷号 | 34期号:06页码:439-447 |
通讯作者邮箱 | zqxg@buaa.edu.cn |
关键词 | 睡眠剥夺 节律紊乱 注意 脑电 特征分类 |
ISSN号 | 1002-0837 |
DOI | 10.16289/j.cnki.1002-0837.2021.06.005 |
其他题名 | EEG Characteristics Analysis and Recognition Induced by Attention Under Sleep-wake Rhythm Disorder |
产权排序 | 3 |
文献子类 | 实证研究 |
中文摘要 | Objective To study the characteristics of EEG signals of special occupations when performing spatial attention orientation tasks in sleep-wake rhythm disorders. Methods The experiments of total sleep deprivation and natural biological rhythm disorder were simulated in the laboratory,and the performance data and EEG data of were collected when subjects completed resting state tasks and spatial attention orientation tasks. Then the data were analyzed and classified by classification methods,which was LDA,KNN and SVM. Results After total sleep deprivation,the reaction time(RT> of the subjects was significantly prolonged and the correct rate(CR)decreased significantly. After natural biological rhythm disorder occurred,both RT and CR recovered to a certain extent,but the level of CR did not return to the normal. Compared with the routine environment,under the 36-hour total sleep deprivation environment and natural biological rhythm disorder environment,sample entropy features of attention level and attention direction changed,and the accuracy of feature classifier and support vector machine classifier(SVM-R)based on radial basis kernel function was higher. Conclusion In conditions of sleep deprivation and natural biological rhythm disorder,the complexity of brain will be reduced. Sample entropy EEG feature extraction method and SVM-R classification method can be used as effective methods to detect and classify the EEG changes for special professionals when attendon tasks are performed. |
英文摘要 | 目的研究特殊职业人员睡眠-觉醒节律紊乱下执行空间注意定向任务时脑电信号的变化特性。方法实验室模拟36 h完全睡眠剥夺和自然生物节律紊乱实验,采集20名受试者完成静息态任务和空间注意定向任务的绩效数据和脑电数据,然后对绩效数据和脑电数据进行分析并采用线性判别式分析法、最近临近法、支持向量机法对脑电数据进行分类。结果在完全睡眠剥夺后受试者的反应时显著延长、正确率显著降低(P |
收录类别 | CSCD |
项目简介 | 国家重点研发计划(2016YFC0802807) |
语种 | 中文 |
CSCD记录号 | CSCD:CSCD |
源URL | [http://ir.psych.ac.cn/handle/311026/41474] ![]() |
专题 | 心理研究所_中国科学院行为科学重点实验室 |
通讯作者 | 周前祥 |
作者单位 | 1.中国科学院心理研究所行为科学重点实验室 2.北京物资学院物流学院 3.北京航空航天大学生物医学工程学院 |
推荐引用方式 GB/T 7714 | 邵舒羽,吴锦涛,周前祥,等. 睡眠-觉醒节律紊乱下注意诱发脑电特征分析与识别[J]. 航天医学与医学工程,2021,34(06):439-447. |
APA | 邵舒羽,吴锦涛,周前祥,柳忠起,&张立伟.(2021).睡眠-觉醒节律紊乱下注意诱发脑电特征分析与识别.航天医学与医学工程,34(06),439-447. |
MLA | 邵舒羽,et al."睡眠-觉醒节律紊乱下注意诱发脑电特征分析与识别".航天医学与医学工程 34.06(2021):439-447. |
入库方式: OAI收割
来源:心理研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。