Geometry of variational methods: dynamics of closed quantum systems
文献类型:期刊论文
作者 | Hackl, Lucas; Guaita, Tommaso; Shi, Tao3,4![]() |
刊名 | SCIPOST PHYSICS
![]() |
出版日期 | 2020 |
卷号 | 9期号:4页码:48 |
关键词 | STATES OPTIMIZATION ALGORITHMS MECHANICS COHERENT VORTEX |
ISSN号 | 2542-4653 |
DOI | 10.21468/SciPostPhys.9.4.048 |
英文摘要 | We present a systematic geometric framework to study closed quantum systems based on suitably chosen variational families. For the purpose of (A) real time evolution, (B) excitation spectra, (C) spectral functions and (D) imaginary time evolution, we show how the geometric approach highlights the necessity to distinguish between two classes of manifolds: Kahler and non-Kahler. Traditional variational methods typically require the variational family to be a Kahler manifold, where multiplication by the imaginary unit preserves the tangent spaces. This covers the vast majority of cases studied in the literature. However, recently proposed classes of generalized Gaussian states make it necessary to also include the non-Kahler case, which has already been encountered occasionally. We illustrate our approach in detail with a range of concrete examples where the geometric structures of the considered manifolds are particularly relevant. These go from Gaussian states and group theoretic coherent states to generalized Gaussian states. |
学科主题 | Physics |
语种 | 英语 |
源URL | [http://ir.itp.ac.cn/handle/311006/27332] ![]() |
专题 | 理论物理研究所_理论物理所1978-2010年知识产出 |
作者单位 | 1.Univ Copenhagen, Dept Math Sci, QMATH, Univ Pk 5, DK-2100 Copenhagen, Denmark 2.Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany 3.Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany 4.Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China 5.Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100049, Peoples R China 6.Univ Ghent, Dept Phys & Astron, Krijgslaan 281, B-9000 Ghent, Belgium 7.Harvard Univ, Dept Phys, Lyman Lab, 17 Oxford St, Cambridge, MA 02138 USA |
推荐引用方式 GB/T 7714 | Hackl, Lucas,Guaita, Tommaso,Shi, Tao,et al. Geometry of variational methods: dynamics of closed quantum systems[J]. SCIPOST PHYSICS,2020,9(4):48. |
APA | Hackl, Lucas,Guaita, Tommaso,Shi, Tao,Haegeman, Jutho,Demler, Eugene,&Cirac, J. Ignacio.(2020).Geometry of variational methods: dynamics of closed quantum systems.SCIPOST PHYSICS,9(4),48. |
MLA | Hackl, Lucas,et al."Geometry of variational methods: dynamics of closed quantum systems".SCIPOST PHYSICS 9.4(2020):48. |
入库方式: OAI收割
来源:理论物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。