基于神经网络与最小二乘法的车道线检测算法研究
文献类型:期刊论文
作者 | 贾会群; 魏仲慧; 何昕; 李沐雨 |
刊名 | 汽车工程
![]() |
出版日期 | 2018 |
期号 | 03页码:363-368 |
关键词 | 车道线检测 BP神经网络 最小二乘法 道路模型 |
英文摘要 | 为提高车道线的检测精度和识别率,在构建新的道路模型基础上提出了一种基于BP神经网络与最小二乘法曲线模型的车道线检测算法。该算法运用具有方向性的线检测器对道路图像进行边缘检测,提取出道路边缘点;接着利用BP神经网络估计新的道路模型参数确定模型函数;根据新道路模型函数的上凸性,以函数最大值为分界点,分界点左侧为左车道线,右侧为右车道线,从而完成对左右车道线的检测;最后利用最小二乘法实现左右车道线重构。实验结果表明,所提出的算法的检测精度达到92.8%,适合多种道路状况下的车道线检测,具有较好的鲁棒性。 |
源URL | [http://ir.ciomp.ac.cn/handle/181722/61377] ![]() |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | 贾会群,魏仲慧,何昕,等. 基于神经网络与最小二乘法的车道线检测算法研究[J]. 汽车工程,2018(03):363-368. |
APA | 贾会群,魏仲慧,何昕,&李沐雨.(2018).基于神经网络与最小二乘法的车道线检测算法研究.汽车工程(03),363-368. |
MLA | 贾会群,et al."基于神经网络与最小二乘法的车道线检测算法研究".汽车工程 .03(2018):363-368. |
入库方式: OAI收割
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。