中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks

文献类型:期刊论文

作者D.Q.Li; S.Y.Xu; D.Wang; D.J.Yan
刊名Optics Letters
出版日期2019
卷号44期号:5页码:1170-1173
关键词Optics
ISSN号0146-9592
DOI10.1364/ol.44.001170
英文摘要In the cophasing of the segmented opticalmirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective. (c) 2019 Optical Society of America
URL标识查看原文
语种英语
源URL[http://ir.ciomp.ac.cn/handle/181722/63273]  
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
D.Q.Li,S.Y.Xu,D.Wang,et al. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. Optics Letters,2019,44(5):1170-1173.
APA D.Q.Li,S.Y.Xu,D.Wang,&D.J.Yan.(2019).Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks.Optics Letters,44(5),1170-1173.
MLA D.Q.Li,et al."Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks".Optics Letters 44.5(2019):1170-1173.

入库方式: OAI收割

来源:长春光学精密机械与物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。