Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks
文献类型:期刊论文
作者 | D.Q.Li; S.Y.Xu; D.Wang; D.J.Yan |
刊名 | Optics Letters
![]() |
出版日期 | 2019 |
卷号 | 44期号:5页码:1170-1173 |
关键词 | Optics |
ISSN号 | 0146-9592 |
DOI | 10.1364/ol.44.001170 |
英文摘要 | In the cophasing of the segmented opticalmirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective. (c) 2019 Optical Society of America |
URL标识 | 查看原文 |
语种 | 英语 |
源URL | [http://ir.ciomp.ac.cn/handle/181722/63273] ![]() |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | D.Q.Li,S.Y.Xu,D.Wang,et al. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. Optics Letters,2019,44(5):1170-1173. |
APA | D.Q.Li,S.Y.Xu,D.Wang,&D.J.Yan.(2019).Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks.Optics Letters,44(5),1170-1173. |
MLA | D.Q.Li,et al."Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks".Optics Letters 44.5(2019):1170-1173. |
入库方式: OAI收割
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。