中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
New Forest Aboveground Biomass Maps of China Integrating Multiple Datasets

文献类型:期刊论文

作者Chang, Zhongbing17; Hobeichi, Sanaa16; Wang, Ying-Ping; Tang, Xuli; Abramowitz, Gab15,16; Chen, Yang17; Cao, Nannan17; Yu, Mengxiao; Huang, Huabing13; Zhou, Guoyi12
刊名REMOTE SENSING
出版日期2021
卷号13期号:15页码:-
关键词forest aboveground biomass carbon stock field measurements remote sensing China
ISSN号2072-4292
DOI10.3390/rs13152892
英文摘要Mapping the spatial variation of forest aboveground biomass (AGB) at the national or regional scale is important for estimating carbon emissions and removals and contributing to global stocktake and balancing the carbon budget. Recently, several gridded forest AGB products have been produced for China by integrating remote sensing data and field measurements, yet significant discrepancies remain among these products in their estimated AGB carbon, varying from 5.04 to 9.81 Pg C. To reduce this uncertainty, here, we first compiled independent, high-quality field measurements of AGB using a systematic and consistent protocol across China from 2011 to 2015. We applied two different approaches, an optimal weighting technique (WT) and a random forest regression method (RF), to develop two observationally constrained hybrid forest AGB products in China by integrating five existing AGB products. The WT method uses a linear combination of the five existing AGB products with weightings that minimize biases with respect to the field measurements, and the RF method uses decision trees to predict a hybrid AGB map by minimizing the bias and variance with respect to the field measurements. The forest AGB stock in China was 7.73 Pg C for the WT estimates and 8.13 Pg C for the RF estimates. Evaluation with the field measurements showed that the two hybrid AGB products had a lower RMSE (29.6 and 24.3 Mg/ha) and bias (-4.6 and -3.8 Mg/ha) than all five participating AGB datasets. Our study demonstrated both the WT and RF methods can be used to harmonize existing AGB maps with field measurements to improve the spatial variability and reduce the uncertainty of carbon stocks. The new spatial AGB maps of China can be used to improve estimates of carbon emissions and removals at the national and subnational scales.
学科主题Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000682285300001
源URL[http://ir.xtbg.org.cn/handle/353005/12320]  
专题西双版纳热带植物园_2012年后新成立研究组
作者单位1.Saatchi, Sassan S.] Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA 91109 USA
2.Saatchi, Sassan S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
3.Southwest Univ, Sch Geog Sci, Chongqing 400715, Peoples R China
4.INRAE, UMR1391 ISPA, F-33140 Villenave Dornon, France
5.Chinese Acad Sci, Xishuangbanna Trop Bot Garden, Mengla 666303, Peoples R China
6.Chinese Acad Sci, Inst Appl Ecol, Shenyang 110016, Peoples R China
7.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
8.Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China
9.Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China
10.Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610041, Peoples R China
推荐引用方式
GB/T 7714
Chang, Zhongbing,Hobeichi, Sanaa,Wang, Ying-Ping,et al. New Forest Aboveground Biomass Maps of China Integrating Multiple Datasets[J]. REMOTE SENSING,2021,13(15):-.
APA Chang, Zhongbing.,Hobeichi, Sanaa.,Wang, Ying-Ping.,Tang, Xuli.,Abramowitz, Gab.,...&Yan, Junhua.(2021).New Forest Aboveground Biomass Maps of China Integrating Multiple Datasets.REMOTE SENSING,13(15),-.
MLA Chang, Zhongbing,et al."New Forest Aboveground Biomass Maps of China Integrating Multiple Datasets".REMOTE SENSING 13.15(2021):-.

入库方式: OAI收割

来源:西双版纳热带植物园

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。