中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Analysis of multivariate longitudinal data using dynamic lasso-regularized copula models with application to large pediatric cardiovascular studies

文献类型:期刊论文

作者Zhang, Wei3; Wu, Colin O.2; Ma, Xiaoyang1; Tian, Xin2; Li, Qizhai3
刊名JOURNAL OF APPLIED STATISTICS
出版日期2021-06-16
页码28
关键词Dynamic copula model functional parameter lasso-regularized spline estimator multivariate longitudinal data statistical machine learning time-varying covariate
ISSN号0266-4763
DOI10.1080/02664763.2021.1937581
英文摘要The National Heart, Lung and Blood Institute Growth and Health Study (NGHS) is a large longitudinal study of childhood health. A main objective of the study is to estimate the joint distributions of cardiovascular risk outcomes at any two time points conditioning on a large number of covariates. Existing multivariate longitudinal methods are not suitable for outcomes at multiple time points. We present a dynamic copula approach for estimating an outcome's joint distributions at two time points given a large number of time-varying covariates. Our models depend on the outcome's time-varying distributions at one time point, the bivariate copula densities and the functional copula parameters. We develop a three-step procedure for variable selection and estimation, which selects the influential covariates using a machine learning procedure based on spline Lasso-regularized least squares, computes the outcome's single-time distribution using splines, and estimates the functional copula parameter of the dynamic copula models. Pointwise confidence intervals are constructed through the resampling-subject bootstrap. We apply our procedure to the NGHS cardiovascular risk data and illustrate the clinical interpretations of the conditional distributions of a set of risk outcomes. We demonstrate the statistical properties of the dynamic models and estimation procedure through a simulation study.
资助项目Intramural Research Program of the NHLBI/NIH ; National Natural Science Foundation of China[11722113]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000662089500001
出版者TAYLOR & FRANCIS LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/58833]  
专题中国科学院数学与系统科学研究院
通讯作者Wu, Colin O.
作者单位1.NHLBI, Hematol Branch, Div Intramural Res, Bldg 10, Bethesda, MD 20892 USA
2.NHLBI, Off Biostat Res, Div Intramural Res, 6705 Rockledge Dr, Bethesda, MD 20892 USA
3.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Wei,Wu, Colin O.,Ma, Xiaoyang,et al. Analysis of multivariate longitudinal data using dynamic lasso-regularized copula models with application to large pediatric cardiovascular studies[J]. JOURNAL OF APPLIED STATISTICS,2021:28.
APA Zhang, Wei,Wu, Colin O.,Ma, Xiaoyang,Tian, Xin,&Li, Qizhai.(2021).Analysis of multivariate longitudinal data using dynamic lasso-regularized copula models with application to large pediatric cardiovascular studies.JOURNAL OF APPLIED STATISTICS,28.
MLA Zhang, Wei,et al."Analysis of multivariate longitudinal data using dynamic lasso-regularized copula models with application to large pediatric cardiovascular studies".JOURNAL OF APPLIED STATISTICS (2021):28.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。