中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
LS-Based Parameter Estimation of DARMA Systems with Uniformly Quantized Observations

文献类型:期刊论文

作者Jing Lida; Zhang Ji-Feng2
刊名JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY
出版日期2021-08-08
页码18
关键词Discrete-time linear time-invariant systems parameter estimation quantized output
ISSN号1009-6124
DOI10.1007/s11424-021-0314-y
英文摘要This paper is concerned with the parameter estimation of deterministic autoregressive moving average (DARMA) systems with quantization data. The estimation algorithms adopted here are the least squares (LS) and the forgetting factor LS, and the signal quantizer is of uniform, that is, with uniform quantization error. The authors analyse the properties of the LS and the forgetting factor LS, and establish the boundedness of the estimation errors and a relationship of the estimation errors with the size of quantization error, which implies that the smaller the quantization error is, the smaller the estimation error is. A numerical example is given to demonstrate theorems.
资助项目National Key R&D Program of China[2018YFA0703800] ; National Natural Science Foundation of China[61877057]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000682818700003
出版者SPRINGER HEIDELBERG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/59044]  
专题中国科学院数学与系统科学研究院
通讯作者Zhang Ji-Feng
作者单位1.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Jing Lida,Zhang Ji-Feng. LS-Based Parameter Estimation of DARMA Systems with Uniformly Quantized Observations[J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,2021:18.
APA Jing Lida,&Zhang Ji-Feng.(2021).LS-Based Parameter Estimation of DARMA Systems with Uniformly Quantized Observations.JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,18.
MLA Jing Lida,et al."LS-Based Parameter Estimation of DARMA Systems with Uniformly Quantized Observations".JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY (2021):18.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。