Almost sure convergence of randomised-difference descent algorithm for stochastic convex optimisation
文献类型:期刊论文
作者 | Geng, Xiaoxue2,3; Huang, Gao1; Zhao, Wenxiao2,3 |
刊名 | IET CONTROL THEORY AND APPLICATIONS
![]() |
出版日期 | 2021-08-15 |
页码 | 12 |
ISSN号 | 1751-8644 |
DOI | 10.1049/cth2.12184 |
英文摘要 | Stochastic gradient descent algorithm is a classical and useful method for stochastic optimisation. While stochastic gradient descent has been theoretically investigated for decades and successfully applied in machine learning such as training of deep neural networks, it essentially relies on obtaining the unbiased estimates of gradients/subgradients of the objective functions. In this paper, by constructing the randomised differences of the objective function, a gradient-free algorithm, named the stochastic randomised-difference descent algorithm, is proposed for stochastic convex optimisation. Under the strongly convex assumption of the objective function, it is proved that the estimates generated from stochastic randomised-difference descent converge to the optimal value with probability one, and the convergence rates of both the mean square error of estimates and the regret functions are established. Finally, some numerical examples are prsented. |
资助项目 | National Key Research and Development Program of China[2018YFA0703800] ; National Nature Science Foundation of China[62022048] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA27000000] |
WOS研究方向 | Automation & Control Systems ; Engineering ; Instruments & Instrumentation |
语种 | 英语 |
WOS记录号 | WOS:000684957300001 |
出版者 | WILEY |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/59104] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zhao, Wenxiao |
作者单位 | 1.Tsinghua Univ, Dept Automat, Beijing, Peoples R China 2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Geng, Xiaoxue,Huang, Gao,Zhao, Wenxiao. Almost sure convergence of randomised-difference descent algorithm for stochastic convex optimisation[J]. IET CONTROL THEORY AND APPLICATIONS,2021:12. |
APA | Geng, Xiaoxue,Huang, Gao,&Zhao, Wenxiao.(2021).Almost sure convergence of randomised-difference descent algorithm for stochastic convex optimisation.IET CONTROL THEORY AND APPLICATIONS,12. |
MLA | Geng, Xiaoxue,et al."Almost sure convergence of randomised-difference descent algorithm for stochastic convex optimisation".IET CONTROL THEORY AND APPLICATIONS (2021):12. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。