中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Cross- Scenario Person Re-identification

文献类型:期刊论文

作者Jia,Ruoran; Liu,Shuguang
刊名Journal of Physics: Conference Series
出版日期2020-11-01
卷号1684期号:1
ISSN号1742-6588
DOI10.1088/1742-6596/1684/1/012071
英文摘要Abstract Person Reid is a challenging task for two factors, first one is background interference, such as changes in light, weather, posture, and camera position. Second is domain adaptive capacity, such as model train by market1501 achieve the same performance on Duke dataset. To solve the above problems, we come up with adopt human semantic to remove clutter from unwanted background information, is naturally a better alternative compare with bounding box, we adopt Local Regions Representation to extra the image features, which can preeminently improve the representation of local feature and global feature. Our proposed CSReID integrates human semantic and Local Regions Representation in person re-identification and not need to train on the evaluation dataset can achieve state of the art cross-modal performance.
语种英语
WOS记录号IOP:1742-6588-1684-1-012071
出版者IOP Publishing
源URL[http://119.78.100.138/handle/2HOD01W0/12416]  
专题中国科学院重庆绿色智能技术研究院
作者单位Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Jia,Ruoran,Liu,Shuguang. Cross- Scenario Person Re-identification[J]. Journal of Physics: Conference Series,2020,1684(1).
APA Jia,Ruoran,&Liu,Shuguang.(2020).Cross- Scenario Person Re-identification.Journal of Physics: Conference Series,1684(1).
MLA Jia,Ruoran,et al."Cross- Scenario Person Re-identification".Journal of Physics: Conference Series 1684.1(2020).

入库方式: OAI收割

来源:重庆绿色智能技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。