中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Fast Non-Negative Latent Factor Model Based on Generalized Momentum Method

文献类型:期刊论文

作者Luo, Xin3; Liu, Zhigang1; Li, Shuai4; Shang, Mingsheng1; Wang, Zidong2
刊名IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
出版日期2021
卷号51期号:1页码:610-620
关键词Big data high-dimensional and sparse (HiDS) matrix latent factor (LF) analysis missing data estimation non-negative LF (NLF) model recommender system
ISSN号2168-2216
DOI10.1109/TSMC.2018.2875452
通讯作者Luo, Xin(luoxin21@dgut.edu.cn)
英文摘要Non-negative latent factor (NLF) models can efficiently acquire useful knowledge from high-dimensional and sparse (HiDS) matrices filled with non-negative data. Single latent factor-dependent, non-negative and multiplicative update (SLF-NMU) is an efficient algorithm for building an NLF model on an HiDS matrix, yet it suffers slow convergence. A momentum method is frequently adopted to accelerate a learning algorithm, but it is incompatible with those implicitly adopting gradients like SLF-NMU. To build a fast NLF (FNLF) model, we propose a generalized momentum method compatible with SLF-NMU. With it, we further propose a single latent factor-dependent non-negative, multiplicative and momentum-incorporated update algorithm, thereby achieving an FNLF model. Empirical studies on six HiDS matrices from industrial application indicate that an FNLF model outperforms an NLF model in terms of both convergence rate and prediction accuracy for missing data. Hence, compared with an NLF model, an FNLF model is more practical in industrial applications.
资助项目National Key Research and Development Program of China[2017YFC0804002] ; National Natural Science Foundation of China[61772493] ; National Natural Science Foundation of China[91646114] ; Chongqing Research Program of Technology Innovation and Application[cstc2017rgzn-zdyfX0020] ; Chongqing Research Program of Technology Innovation and Application[cstc2017zdcy-zdyf0554] ; Chongqing Research Program of Technology Innovation and Application[cstc2017rgzn-zdyf0118] ; Chongqing Cultivation Program of Innovation and Entrepreneurship Demonstration Group[cstc2017kjrc-cxcytd0149] ; Chongqing Overseas Scholars Innovation Program[cx2017012] ; Chongqing Overseas Scholars Innovation Program[cx2018011] ; Pioneer Hundred Talents Program of Chinese Academy of Sciences
WOS研究方向Automation & Control Systems ; Computer Science
语种英语
WOS记录号WOS:000607806700046
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.138/handle/2HOD01W0/12763]  
专题中国科学院重庆绿色智能技术研究院
通讯作者Luo, Xin
作者单位1.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China
2.Brunel Univ London, Dept Comp Sci, Uxbridge UB8 3PH, Middx, England
3.Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
4.Hong Kong Polytech Univ, Dept Comp, Hong Kong 999077, Peoples R China
推荐引用方式
GB/T 7714
Luo, Xin,Liu, Zhigang,Li, Shuai,et al. A Fast Non-Negative Latent Factor Model Based on Generalized Momentum Method[J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,2021,51(1):610-620.
APA Luo, Xin,Liu, Zhigang,Li, Shuai,Shang, Mingsheng,&Wang, Zidong.(2021).A Fast Non-Negative Latent Factor Model Based on Generalized Momentum Method.IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,51(1),610-620.
MLA Luo, Xin,et al."A Fast Non-Negative Latent Factor Model Based on Generalized Momentum Method".IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 51.1(2021):610-620.

入库方式: OAI收割

来源:重庆绿色智能技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。