中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Convergence Analysis of Single Latent Factor-Dependent, Nonnegative, and Multiplicative Update-Based Nonnegative Latent Factor Models

文献类型:期刊论文

作者Liu, Zhigang1,3,4; Luo, Xin1,4,5; Wang, Zidong2
刊名IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
出版日期2021-04-01
卷号32期号:4页码:1737-1749
关键词Manganese Convergence Computational modeling Learning systems Analytical models Sparse matrices Big Data Big data convergence high-dimensional and sparse (HiDS) matrix latent factor (LF) analysis learning system neural networks nonnegative LF (NLF) analysis single LF-dependent nonnegative and multiplicative update (SLF-NMU)
ISSN号2162-237X
DOI10.1109/TNNLS.2020.2990990
通讯作者Luo, Xin(luoxin21@cigit.ac.cn)
英文摘要A single latent factor (LF)-dependent, nonnegative, and multiplicative update (SLF-NMU) learning algorithm is highly efficient in building a nonnegative LF (NLF) model defined on a high-dimensional and sparse (HiDS) matrix. However, convergence characteristics of such NLF models are never justified in theory. To address this issue, this study conducts rigorous convergence analysis for an SLF-NMU-based NLF model. The main idea is twofold: 1) proving that its learning objective keeps nonincreasing with its SLF-NMU-based learning rules via constructing specific auxiliary functions; and 2) proving that it converges to a stable equilibrium point with its SLF-NMU-based learning rules via analyzing the Karush-Kuhn-Tucker (KKT) conditions of its learning objective. Experimental results on ten HiDS matrices from real applications provide numerical evidence that indicates the correctness of the achieved proof.
资助项目National Natural Science Foundation of China[61772493] ; National Natural Science Foundation of China[61933007] ; Natural Science Foundation of Chongqing (China)[cstc2019jcyjjqX0013] ; Pioneer Hundred Talents Program of Chinese Academy of Sciences
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000637534200027
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.138/handle/2HOD01W0/13347]  
专题中国科学院重庆绿色智能技术研究院
通讯作者Luo, Xin
作者单位1.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Engn Res Ctr Big Data Applicat Smart Ci, Chongqing 400714, Peoples R China
2.Brunel Univ London, Dept Comp Sci, Uxbridge UB8 3PH, Middx, England
3.Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
4.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China
5.Hengrui Chongqing Artificial Intelligence Res Ctr, Dept Big Data Analyses Tech, Chongqing 401331, Peoples R China
推荐引用方式
GB/T 7714
Liu, Zhigang,Luo, Xin,Wang, Zidong. Convergence Analysis of Single Latent Factor-Dependent, Nonnegative, and Multiplicative Update-Based Nonnegative Latent Factor Models[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2021,32(4):1737-1749.
APA Liu, Zhigang,Luo, Xin,&Wang, Zidong.(2021).Convergence Analysis of Single Latent Factor-Dependent, Nonnegative, and Multiplicative Update-Based Nonnegative Latent Factor Models.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,32(4),1737-1749.
MLA Liu, Zhigang,et al."Convergence Analysis of Single Latent Factor-Dependent, Nonnegative, and Multiplicative Update-Based Nonnegative Latent Factor Models".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 32.4(2021):1737-1749.

入库方式: OAI收割

来源:重庆绿色智能技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。