Melt-spun Sn(1-x-y)SbxMnyTe with unique multiscale microstructures approaching exceptional average thermoelectric zT
文献类型:期刊论文
作者 | Yan, Xiangmei2; Zheng, Sikang2; Zhou, Zizhen2; Wu, Hong2; Zhang, Bin3; Huang, Yuling2; Lu, Xu2; Han, Guang4; Wang, Guoyu1,5![]() |
刊名 | NANO ENERGY
![]() |
出版日期 | 2021-06-01 |
卷号 | 84页码:13 |
关键词 | Thermoelectric SnTe Melt spinning Band engineering Defect engineering |
ISSN号 | 2211-2855 |
DOI | 10.1016/j.nanoen.2021.105879 |
通讯作者 | Han, Guang(guang.han@cqu.edu.cn) ; Zhou, Xiaoyuan(xiaoyuan2013@cqu.edu.cn) |
英文摘要 | SnTe has attracted worldwide attention as a non-toxic candidate material for thermoelectric applications; however, un-modified SnTe possesses inferior thermoelectric properties. Herein, we report the significantly improved thermoelectric performance in Sb, Mn-codoped SnTe synthesized by energy-efficient melt spinning. Sb segregation was observed at the grain boundaries of Sb-doped and Sb, Mn-codoped SnTe melt-spun ribbons, leading to grain refinement; subsequent sintering promotes the diffusion of Sb while retains Sb-rich particles. Initially, intensified phonon scattering from unique multiscale microstructures, including point defects, Sb-rich particles and high-density dislocations generated after Sb doping, effectively diminishes the lattice thermal conductivity of SnTe, leading to a substantially low value of 0.55 W m-1 K-1 in Sn0.84Sb0.16Te at 300 K. Further, the power factors are significantly enhanced via Mn doping owing to valence band convergence, verified by firstprinciples calculation. Consequently, a peak zT of - 1.27 at 773 K and an exceptional average zT of - 0.89 over 300-873 K are obtained in Sn0.72Sb0.16Mn0.12Te, which are - 110% and - 340% higher than those of SnTe, respectively. This study provides an effective pathway to synergistically improve the thermoelectric performance of SnTe by microstructure and band structure engineering, and establishes melt spinning as a controllable synthetic method to high-performance thermoelectrics. |
资助项目 | National Natural Science Foundation of China[11674040] ; National Natural Science Foundation of China[51672270] ; National Natural Science Foundation of China[51802034] ; National Natural Science Foundation of China[51772035] ; Fundamental Research Funds for the Central Universities[2018CDJDWL0011] ; Fundamental Research Funds for the Central Universities[2019CDQYCL003] ; Key Research Program of Frontier Sciences, CAS[QYZDBSSWSLH016] |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000648543300001 |
出版者 | ELSEVIER |
源URL | [http://119.78.100.138/handle/2HOD01W0/13384] ![]() |
专题 | 中国科学院重庆绿色智能技术研究院 |
通讯作者 | Han, Guang; Zhou, Xiaoyuan |
作者单位 | 1.Univ Chinese Acad Sci, Beijing 100044, Peoples R China 2.Chongqing Univ, Coll Phys, Chongqing 401331, Peoples R China 3.Chongqing Univ, Analyt & Testing Ctr, Chongqing 401331, Peoples R China 4.Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China 5.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China |
推荐引用方式 GB/T 7714 | Yan, Xiangmei,Zheng, Sikang,Zhou, Zizhen,et al. Melt-spun Sn(1-x-y)SbxMnyTe with unique multiscale microstructures approaching exceptional average thermoelectric zT[J]. NANO ENERGY,2021,84:13. |
APA | Yan, Xiangmei.,Zheng, Sikang.,Zhou, Zizhen.,Wu, Hong.,Zhang, Bin.,...&Zhou, Xiaoyuan.(2021).Melt-spun Sn(1-x-y)SbxMnyTe with unique multiscale microstructures approaching exceptional average thermoelectric zT.NANO ENERGY,84,13. |
MLA | Yan, Xiangmei,et al."Melt-spun Sn(1-x-y)SbxMnyTe with unique multiscale microstructures approaching exceptional average thermoelectric zT".NANO ENERGY 84(2021):13. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。