中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An Instance-Frequency-Weighted Regularization Scheme for Non-Negative Latent Factor Analysis on High-Dimensional and Sparse Data

文献类型:期刊论文

作者Luo, Xin4; Wang, Zidong1; Shang, Mingsheng2,3
刊名IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
出版日期2021-06-01
卷号51期号:6页码:3522-3532
关键词High-dimensional and sparse (HiDS) data industrial application instance-frequency non-negative latent factor analysis (NLFA) recommender system regularization
ISSN号2168-2216
DOI10.1109/TSMC.2019.2930525
通讯作者Shang, Mingsheng(msshang@cigit.ac.cn)
英文摘要High-dimensional and sparse (HiDS) data with non-negativity constraints are commonly seen in industrial applications, such as recommender systems. They can be modeled into an HiDS matrix, from which non-negative latent factor analysis (NLFA) is highly effective in extracting useful features. Preforming NLFA on an HiDS matrix is ill-posed, desiring an effective regularization scheme for avoiding overfitting. Current models mostly adopt a standard L-2 scheme, which does not consider the imbalanced distribution of known data in an HiDS matrix. From this point of view, this paper proposes an instancefrequency-weighted regularization (IR) scheme for NLFA on HiDS data. It specifies the regularization effects on each latent factors with its relevant instance count, i.e., instance-frequency, which clearly describes the known data distribution of an HiDS matrix. By doing so, it achieves finely grained modeling of regularization effects. The experimental results on HiDS matrices from industrial applications demonstrate that compared with an L-2 scheme, an IR scheme enables a resultant model to achieve higher accuracy in missing data estimation of an HiDS matrix.
资助项目National Natural Science Foundation of China[61772493] ; National Natural Science Foundation of China[91646114] ; National Natural Science Foundation of China[61602352] ; Chongqing Research Program of Technology Innovation and Application[cstc2017rgzn-zdyfX0020] ; Chongqing Research Program of Technology Innovation and Application[cstc2017zdcyzdyf0554] ; Chongqing Research Program of Technology Innovation and Application[cstc2017rgzn-zdyf0118] ; Chongqing Cultivation Program of Innovation and Entrepreneurship Demonstration Group[cstc2017kjrc-cxcytd0149] ; Chongqing Overseas Scholars Innovation Program[cx2017012] ; Chongqing Overseas Scholars Innovation Program[cx2018011] ; Pioneer Hundred Talents Program of Chinese Academy of Sciences
WOS研究方向Automation & Control Systems ; Computer Science
语种英语
WOS记录号WOS:000652103000018
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.138/handle/2HOD01W0/13658]  
专题中国科学院重庆绿色智能技术研究院
通讯作者Shang, Mingsheng
作者单位1.Brunel Univ London, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
2.Chinese Acad Sci, Chongqing Engn Res Ctr Big Data Applicat Smart Ci, Chongqing 400714, Peoples R China
3.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China
4.Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
推荐引用方式
GB/T 7714
Luo, Xin,Wang, Zidong,Shang, Mingsheng. An Instance-Frequency-Weighted Regularization Scheme for Non-Negative Latent Factor Analysis on High-Dimensional and Sparse Data[J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,2021,51(6):3522-3532.
APA Luo, Xin,Wang, Zidong,&Shang, Mingsheng.(2021).An Instance-Frequency-Weighted Regularization Scheme for Non-Negative Latent Factor Analysis on High-Dimensional and Sparse Data.IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,51(6),3522-3532.
MLA Luo, Xin,et al."An Instance-Frequency-Weighted Regularization Scheme for Non-Negative Latent Factor Analysis on High-Dimensional and Sparse Data".IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 51.6(2021):3522-3532.

入库方式: OAI收割

来源:重庆绿色智能技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。