15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor
文献类型:期刊论文
作者 | Xu, Tongle2,3; Lv, Jie2,3; Yang, Ke2; He, Ya1; Yang, Qianguang2,3; Chen, Haiyan2![]() ![]() |
刊名 | ENERGY & ENVIRONMENTAL SCIENCE
![]() |
出版日期 | 2021-08-04 |
页码 | 11 |
ISSN号 | 1754-5692 |
DOI | 10.1039/d1ee01193f |
通讯作者 | Lu, Shirong(lushirong@cigit.ac.cn) |
英文摘要 | Selenophene substitution of photovoltaics materials can improve their intermolecular interactions and thus offer a good opportunity to finely optimize their phase separation morphology to an ideal state. However, the performance of this substitution strategy is yet unclear in liquid crystalline donors, which have demonstrated high efficiency. The combination of those structural advantages may help to achieve state-of-the-art device performance. Herein, two new liquid crystalline small molecule donors are designed and synthesized with different substituents on benzo[1,2-b:4,5-b']dithiophene (BDT) central units, including L1 with thiophene group and L2 with selenophene group, for investigating the effect of selenophene substitution on morphology and photovoltaic performance of liquid crystalline donors. Unlike the control donor L1, the selenide donor L2 shows a higher intramolecular interaction and presents a novel sematic liquid crystal phase, which results in a more favored morphology, better light harvest, and lower charge recombination. As a result, outstanding power conversion efficiency up to 15.8% is realized in the L2:Y6 based devices. Particularly promising is the fact that selenide-based devices with active layer thicknesses up to similar to 300 nm can still output a high PCE of 14.3%, which is promising for roll-to-roll printing processes with large-scale production. To our best knowledge, the PCEs of 15.8% and 14.3% are the highest values reported to date in binary ASM-OSCs and thick-film ASM-OSCs, respectively. These excellent values demonstrated the superiority of selenophene in the construction of efficient small molecule liquid crystalline donors. |
资助项目 | National Youth Thousand Program Project[R52A199Z11] ; Chongqing Funds for Distinguished Young Scientists[cstc2020jcyj-jqX0018] ; CAS Pioneer Hundred Talents Program[Y82A060Q10] ; CAS Pioneer Hundred Talents Program[Y92A160Q10] ; CAS Pioneer Hundred Talents Program[E0296102] ; National Natural Science Foundation of China[62074022] ; National Natural Science Foundation of China[61805245] ; National Natural Science Foundation of China[62074149] ; Natural Science Foundation of Chongqing[cstc2019jcyj-msxmX0400] |
WOS研究方向 | Chemistry ; Energy & Fuels ; Engineering ; Environmental Sciences & Ecology |
语种 | 英语 |
WOS记录号 | WOS:000686698700001 |
出版者 | ROYAL SOC CHEMISTRY |
源URL | [http://119.78.100.138/handle/2HOD01W0/13915] ![]() |
专题 | 中国科学院重庆绿色智能技术研究院 |
通讯作者 | Lu, Shirong |
作者单位 | 1.Natl Univ Singapore, Dept Mat Sci & Engn, 7 Engn Dr 1, Singapore 117574, Singapore 2.Chinese Acad Sci, Univ Chinese Acad Sci UCAS Chongqing, Chongqing Sch, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Chongqing Univ, Sch Energy & Power Engn, MOE Key Lab Low Grade Energy Utilizat Technol & S, CQU NUS Renewable Energy Mat & Devices Joint Lab, Chongqing 400044, Peoples R China |
推荐引用方式 GB/T 7714 | Xu, Tongle,Lv, Jie,Yang, Ke,et al. 15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor[J]. ENERGY & ENVIRONMENTAL SCIENCE,2021:11. |
APA | Xu, Tongle.,Lv, Jie.,Yang, Ke.,He, Ya.,Yang, Qianguang.,...&Lu, Shirong.(2021).15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor.ENERGY & ENVIRONMENTAL SCIENCE,11. |
MLA | Xu, Tongle,et al."15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor".ENERGY & ENVIRONMENTAL SCIENCE (2021):11. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。