中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep robust residual network for super-resolution of 2D fetal brain MRI

文献类型:期刊论文

作者Song, Liyao3; Wang, Quan2; Liu, Ting1; Li, Haiwei2; Fan, Jiancun3; Yang, Jian1; Hu, Bingliang2
刊名SCIENTIFIC REPORTS
出版日期2022-01-10
卷号12期号:1
ISSN号2045-2322
DOI10.1038/s41598-021-03979-1
产权排序2
英文摘要

Spatial resolution is a key factor of quantitatively evaluating the quality of magnetic resonance imagery (MRI). Super-resolution (SR) approaches can improve its spatial resolution by reconstructing high-resolution (HR) images from low-resolution (LR) ones to meet clinical and scientific requirements. To increase the quality of brain MRI, we study a robust residual-learning SR network (RRLSRN) to generate a sharp HR brain image from an LR input. Due to the Charbonnier loss can handle outliers well, and Gradient Difference Loss (GDL) can sharpen an image, we combined the Charbonnier loss and GDL to improve the robustness of the model and enhance the texture information of SR results. Two MRI datasets of adult brain, Kirby 21 and NAMIC, were used to train and verify the effectiveness of our model. To further verify the generalizability and robustness of the proposed model, we collected eight clinical fetal brain MRI 2D data for evaluation. The experimental results have shown that the proposed deep residual-learning network achieved superior performance and high efficiency over other compared methods.

语种英语
WOS记录号WOS:000741645800091
出版者HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY
源URL[http://ir.opt.ac.cn/handle/181661/95692]  
专题西安光学精密机械研究所_光学影像学习与分析中心
通讯作者Fan, Jiancun; Yang, Jian; Hu, Bingliang
作者单位1.Xi An Jiao Tong Univ, Affiliated Hosp 1, Xian 710061, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710049, Peoples R China
3.Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Peoples R China
推荐引用方式
GB/T 7714
Song, Liyao,Wang, Quan,Liu, Ting,et al. Deep robust residual network for super-resolution of 2D fetal brain MRI[J]. SCIENTIFIC REPORTS,2022,12(1).
APA Song, Liyao.,Wang, Quan.,Liu, Ting.,Li, Haiwei.,Fan, Jiancun.,...&Hu, Bingliang.(2022).Deep robust residual network for super-resolution of 2D fetal brain MRI.SCIENTIFIC REPORTS,12(1).
MLA Song, Liyao,et al."Deep robust residual network for super-resolution of 2D fetal brain MRI".SCIENTIFIC REPORTS 12.1(2022).

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。