Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu2Te Nanocrystals and Resonant Level Doping
文献类型:期刊论文
| 作者 | Zhang, Qingtang1; Ti, Zhuoyang2; Zhu, Yuelei3; Zhang, Yongsheng2; Cao, Yang1; Li, Shuang1 ; Wang, Meiyu3; Li, Di2 ; Zou, Bo1; Hou, Yunxiang1
|
| 刊名 | ACS NANO
![]() |
| 出版日期 | 2021-12-28 |
| 卷号 | 15 |
| 关键词 | resonant levels nanocrystals thermoelectric materials carrier concentration lattice thermal conductivity |
| ISSN号 | 1936-0851 |
| DOI | 10.1021/acsnano.1c05650 |
| 通讯作者 | Wang, Peng(wangpeng@nju.edu.cn) ; Tang, Guodong(tangguodong@njust.edu.cn) |
| 英文摘要 | The binary compound of GeTe emerging as a potential medium-temperature thermoelectric material has drawn a great deal of attention. Here, we achieve ultralow lattice thermal conductivity and high thermoelectric performance in In and a heavy content of Cu codoped GeTe thermoelectrics. In dopants improve the density of state near the surface of Femi of GeTe by introducing resonant levels, producing a sharp increase of the Seebeck coefficient. In and Cu codoping not only optimizes carrier concentration but also substantially increases carrier mobility to a high value of 87 cm(2) V-1 s(-1 )due to the diminution of Ge vacancies. The enhanced Seebeck coefficient coupled with dramatically enhanced carrier mobility results in significant enhancement of PF in Ge1.04-x-yInxCuyTe series. Moreover, we introduce Cu2Te nanocrystals' secondary phase into GeTe by alloying a heavy content of Cu. Cu2Te nanocrystals and a high density of dislocations cause strong phonon scattering, significantly diminishing lattice thermal conductivity. The lattice thermal conductivity reduced as low as 0.31 W m(-1) K-1 at 823 K, which is not only lower than the amorphous limit of GeTe but also competitive with those of thermoelectric materials with strong lattice anharmonicity or complex crystal structures. Consequently, a high ZT of 2.0 was achieved for Ge0.9In0.015Cu0.125Te by decoupling electron and phonon transport of GeTe. This work highlights the importance of phonon engineering in advancing high-performance GeTe thermoelectrics. |
| WOS关键词 | BAND CONVERGENCE ; POLYCRYSTALLINE SNSE ; FIGURE ; MERIT ; PBTE ; EFFICIENCY ; LEADS ; SNTE |
| 资助项目 | National Natural Science Foundation of China[52071182] ; Qinglan Project of the Young and Middle-aged Academic Leader of Jiangsu Province ; Fundamental Research Funds for the Central Universities[30921011107] |
| WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science |
| 语种 | 英语 |
| WOS记录号 | WOS:000751890100052 |
| 出版者 | AMER CHEMICAL SOC |
| 资助机构 | National Natural Science Foundation of China ; Qinglan Project of the Young and Middle-aged Academic Leader of Jiangsu Province ; Fundamental Research Funds for the Central Universities |
| 源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/127554] ![]() |
| 专题 | 中国科学院合肥物质科学研究院 |
| 通讯作者 | Wang, Peng; Tang, Guodong |
| 作者单位 | 1.Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, MIIT Key Lab Adv Metall & Intermetall Mat Technol, Nanjing 210094, Peoples R China 2.Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China 3.Nanjing Univ, Innovat Ctr Adv Microstruct, Coll Engn & Appl Sci & Collaborat, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China |
| 推荐引用方式 GB/T 7714 | Zhang, Qingtang,Ti, Zhuoyang,Zhu, Yuelei,et al. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu2Te Nanocrystals and Resonant Level Doping[J]. ACS NANO,2021,15. |
| APA | Zhang, Qingtang.,Ti, Zhuoyang.,Zhu, Yuelei.,Zhang, Yongsheng.,Cao, Yang.,...&Tang, Guodong.(2021).Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu2Te Nanocrystals and Resonant Level Doping.ACS NANO,15. |
| MLA | Zhang, Qingtang,et al."Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu2Te Nanocrystals and Resonant Level Doping".ACS NANO 15(2021). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


