A Comparison of LiDAR Filtering Algorithms in Vegetated Mountain Areas
文献类型:期刊论文
作者 | Zhao, Xiaoqian3; Su, Yanjun4; Li, WenKai1; Hu, Tianyu; Liu, Jin; Guo, Qinghua3,4![]() |
刊名 | CANADIAN JOURNAL OF REMOTE SENSING
![]() |
出版日期 | 2018 |
卷号 | 44期号:4页码:287-298 |
ISSN号 | 0703-8992 |
DOI | 10.1080/07038992.2018.1481738 |
文献子类 | Article |
英文摘要 | Filtering of airborne light detection and ranging (LiDAR) data is a challenging task in vegetated mountain areas. Environmental features and LiDAR data characteristics have significant impacts on the performance of filtering algorithms. This study aims to determine the effects of topographic and environmental features such as slope, canopy cover, elevation variability, and LiDAR point density on five widely used filtering algorithms, including multi-scale curvature classification (MCC), interpolation-based filtering (IBF) algorithm, morphological filtering (MF) algorithm, progressive triangulated irregular network densification filtering (PTDF) algorithm, and slope-based filtering (SBF). The results show that the performances of these filtering algorithms are all significantly influenced by the chosen factors, but the dominant influential factor varies with algorithms. The MCC works well in steep and dense forests; IBF and MCC outperform the rest of filtering algorithms in areas with steep terrain but low vegetation coverage; and PTDF is more reliable for low-density LiDAR data. Our results can provide guidance for choosing the appropriate filtering algorithm based on the specific topographic and environmental features of a study area. |
学科主题 | Remote Sensing |
出版地 | PHILADELPHIA |
电子版国际标准刊号 | 1712-7971 |
WOS关键词 | AIRBORNE LIDAR ; DEM GENERATION ; CLASSIFICATION ; FOREST ; SEGMENTATION ; EXTRACTION ; ELEVATION ; MODEL |
语种 | 英语 |
WOS记录号 | WOS:000461864500003 |
出版者 | TAYLOR & FRANCIS INC |
资助机构 | National Key R&D Program of China [2017YFC0503905, 2016YFC0500202] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [41471363, 31741016] ; Frontier Science Key Programs of the Chinese Academy of Sciences [QYZDY-SSW-SMC011] ; CAS Pioneer Hundred Talents Program ; US National Science FoundationNational Science Foundation (NSF) [EAR 0922307] |
源URL | [http://ir.ibcas.ac.cn/handle/2S10CLM1/20582] ![]() |
专题 | 植被与环境变化国家重点实验室 |
作者单位 | 1.Univ Calif Merced, Sierra Nevada Res Inst, Merced, CA 95343 USA 2.Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou 510275, Guangdong, Peoples R China 3.Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China 4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhao, Xiaoqian,Su, Yanjun,Li, WenKai,et al. A Comparison of LiDAR Filtering Algorithms in Vegetated Mountain Areas[J]. CANADIAN JOURNAL OF REMOTE SENSING,2018,44(4):287-298. |
APA | Zhao, Xiaoqian,Su, Yanjun,Li, WenKai,Hu, Tianyu,Liu, Jin,&Guo, Qinghua.(2018).A Comparison of LiDAR Filtering Algorithms in Vegetated Mountain Areas.CANADIAN JOURNAL OF REMOTE SENSING,44(4),287-298. |
MLA | Zhao, Xiaoqian,et al."A Comparison of LiDAR Filtering Algorithms in Vegetated Mountain Areas".CANADIAN JOURNAL OF REMOTE SENSING 44.4(2018):287-298. |
入库方式: OAI收割
来源:植物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。