中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery

文献类型:期刊论文

作者Su, Yanjun; Ma, Qin; Guo, Qinghua2
刊名INTERNATIONAL JOURNAL OF DIGITAL EARTH
出版日期2017
卷号10期号:3页码:307-323
关键词Tree height Sierra Nevada LiDAR integration fine resolution
ISSN号1753-8947
DOI10.1093/jpe/rtw099
文献子类Article
英文摘要Forests of the Sierra Nevada (SN) mountain range are valuable natural heritages for the region and the country, and tree height is an important forest structure parameter for understanding the SN forest ecosystem. There is still a need in the accurate estimation of wall-to-wall SN tree height distribution at fine spatial resolution. In this study, we presented a method to map wall-to-wall forest tree height (defined as Lorey's height) across the SN at 70-m resolution by fusing multi-source datasets, including over 1600 in situ tree height measurements and over 1600 km(2) airborne light detection and ranging (LiDAR) data. Accurate tree height estimates within these airborne LiDAR boundaries were first computed based on in situ measurements, and then these airborne LiDAR-derived tree heights were used as reference data to estimate tree heights at Geoscience Laser Altimeter System (GLAS) footprints. Finally, the random forest algorithm was used to model the SN tree height from these GLAS tree heights, optical imagery, topographic data, and climate data. The results show that our fine-resolution SN tree height product has a good correspondence with field measurements. The coefficient of determination between them is 0.60, and the root-mean-squared error is 5.45 m.
学科主题Plant Sciences ; Environmental Sciences & Ecology ; Forestry
出版地ABINGDON
电子版国际标准刊号1753-8955
WOS关键词LEAF-AREA INDEX ; LANDSAT ETM+ DATA ; ABOVEGROUND BIOMASS ; CANOPY-HEIGHT ; MULTISPECTRAL IMAGERY ; NATIONAL FOREST ; SRTM DEM ; LASER ; DENSITY ; PARAMETERS
语种英语
WOS记录号WOS:000397126800018
出版者TAYLOR & FRANCIS LTD
资助机构National Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [41471363, 31270563] ; National Science FoundationNational Science Foundation (NSF) [DBI 1356077] ; USDA Forest Service Pacific Southwest Research StationUnited States Department of Agriculture (USDA)United States Forest Service
源URL[http://ir.ibcas.ac.cn/handle/2S10CLM1/22119]  
专题植被与环境变化国家重点实验室
作者单位1.Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing, Peoples R China
2.Univ Calif Merced, Sch Engn, Sierra Nevada Res Inst, 5200 North Lake Rd, Merced, CA 95343 USA
推荐引用方式
GB/T 7714
Su, Yanjun,Ma, Qin,Guo, Qinghua. Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2017,10(3):307-323.
APA Su, Yanjun,Ma, Qin,&Guo, Qinghua.(2017).Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery.INTERNATIONAL JOURNAL OF DIGITAL EARTH,10(3),307-323.
MLA Su, Yanjun,et al."Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery".INTERNATIONAL JOURNAL OF DIGITAL EARTH 10.3(2017):307-323.

入库方式: OAI收割

来源:植物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。