Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery
文献类型:期刊论文
作者 | Su, Yanjun; Ma, Qin; Guo, Qinghua2![]() |
刊名 | INTERNATIONAL JOURNAL OF DIGITAL EARTH
![]() |
出版日期 | 2017 |
卷号 | 10期号:3页码:307-323 |
关键词 | Tree height Sierra Nevada LiDAR integration fine resolution |
ISSN号 | 1753-8947 |
DOI | 10.1093/jpe/rtw099 |
文献子类 | Article |
英文摘要 | Forests of the Sierra Nevada (SN) mountain range are valuable natural heritages for the region and the country, and tree height is an important forest structure parameter for understanding the SN forest ecosystem. There is still a need in the accurate estimation of wall-to-wall SN tree height distribution at fine spatial resolution. In this study, we presented a method to map wall-to-wall forest tree height (defined as Lorey's height) across the SN at 70-m resolution by fusing multi-source datasets, including over 1600 in situ tree height measurements and over 1600 km(2) airborne light detection and ranging (LiDAR) data. Accurate tree height estimates within these airborne LiDAR boundaries were first computed based on in situ measurements, and then these airborne LiDAR-derived tree heights were used as reference data to estimate tree heights at Geoscience Laser Altimeter System (GLAS) footprints. Finally, the random forest algorithm was used to model the SN tree height from these GLAS tree heights, optical imagery, topographic data, and climate data. The results show that our fine-resolution SN tree height product has a good correspondence with field measurements. The coefficient of determination between them is 0.60, and the root-mean-squared error is 5.45 m. |
学科主题 | Plant Sciences ; Environmental Sciences & Ecology ; Forestry |
出版地 | ABINGDON |
电子版国际标准刊号 | 1753-8955 |
WOS关键词 | LEAF-AREA INDEX ; LANDSAT ETM+ DATA ; ABOVEGROUND BIOMASS ; CANOPY-HEIGHT ; MULTISPECTRAL IMAGERY ; NATIONAL FOREST ; SRTM DEM ; LASER ; DENSITY ; PARAMETERS |
语种 | 英语 |
WOS记录号 | WOS:000397126800018 |
出版者 | TAYLOR & FRANCIS LTD |
资助机构 | National Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [41471363, 31270563] ; National Science FoundationNational Science Foundation (NSF) [DBI 1356077] ; USDA Forest Service Pacific Southwest Research StationUnited States Department of Agriculture (USDA)United States Forest Service |
源URL | [http://ir.ibcas.ac.cn/handle/2S10CLM1/22119] ![]() |
专题 | 植被与环境变化国家重点实验室 |
作者单位 | 1.Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing, Peoples R China 2.Univ Calif Merced, Sch Engn, Sierra Nevada Res Inst, 5200 North Lake Rd, Merced, CA 95343 USA |
推荐引用方式 GB/T 7714 | Su, Yanjun,Ma, Qin,Guo, Qinghua. Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2017,10(3):307-323. |
APA | Su, Yanjun,Ma, Qin,&Guo, Qinghua.(2017).Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery.INTERNATIONAL JOURNAL OF DIGITAL EARTH,10(3),307-323. |
MLA | Su, Yanjun,et al."Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery".INTERNATIONAL JOURNAL OF DIGITAL EARTH 10.3(2017):307-323. |
入库方式: OAI收割
来源:植物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。