Deep learning neural networks for the third-order nonlinear Schr?dinger equation: bright solitons, breathers, and rogue waves
文献类型:期刊论文
作者 | Zhou,Zijian1,2; Yan,Zhenya1,2 |
刊名 | Communications in Theoretical Physics
![]() |
出版日期 | 2021-09-03 |
卷号 | 73期号:10 |
关键词 | third-order nonlinear Schr?dinger equation deep learning data-driven solitons data-driven parameter discovery |
ISSN号 | 0253-6102 |
DOI | 10.1088/1572-9494/ac1cd9 |
英文摘要 | Abstract The dimensionless third-order nonlinear Schr?dinger equation (alias the Hirota equation) is investigated via deep leaning neural networks. In this paper, we use the physics-informed neural networks (PINNs) deep learning method to explore the data-driven solutions (e.g. bright soliton, breather, and rogue waves) of the Hirota equation when the two types of the unperturbated and perturbated (a 2% noise) training data are considered. Moreover, we use the PINNs deep learning to study the data-driven discovery of parameters appearing in the Hirota equation with the aid of bright solitons. |
语种 | 英语 |
WOS记录号 | IOP:0253-6102-73-10-AC1CD9 |
出版者 | IOP Publishing |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/59126] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Yan,Zhenya |
作者单位 | 1.Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China 2.School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
推荐引用方式 GB/T 7714 | Zhou,Zijian,Yan,Zhenya. Deep learning neural networks for the third-order nonlinear Schr?dinger equation: bright solitons, breathers, and rogue waves[J]. Communications in Theoretical Physics,2021,73(10). |
APA | Zhou,Zijian,&Yan,Zhenya.(2021).Deep learning neural networks for the third-order nonlinear Schr?dinger equation: bright solitons, breathers, and rogue waves.Communications in Theoretical Physics,73(10). |
MLA | Zhou,Zijian,et al."Deep learning neural networks for the third-order nonlinear Schr?dinger equation: bright solitons, breathers, and rogue waves".Communications in Theoretical Physics 73.10(2021). |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。