Stability of Transonic Contact Discontinuity for Two-Dimensional Steady Compressible Euler Flows in a Finitely Long Nozzle
文献类型:期刊论文
作者 | Huang, Feimin1![]() |
刊名 | ANNALS OF PDE
![]() |
出版日期 | 2021-12-01 |
卷号 | 7期号:2页码:96 |
关键词 | Transonic flow Contact discontinuity Free boundary Compressible Euler flow Finitely long nozzle |
ISSN号 | 2524-5317 |
DOI | 10.1007/s40818-021-00113-2 |
英文摘要 | We consider the stability of transonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle. This is the first work on the mixed-type problem of transonic flows across a contact discontinuity as a free boundary in nozzles. We start with the Euler-Lagrangian transformation to straighten the contact discontinuity in the new coordinates. However, the upper nozzle wall in the subsonic region depending on the mass flux becomes a free boundary after the transformation. Then we develop new ideas and techniques to solve the free-boundary problem in three steps: (1) we fix the free boundary and generate a new iteration scheme to solve the corresponding fixed boundary value problem of the hyperbolic-elliptic mixed type by building some powerful estimates for both the first-order hyperbolic equation and a second-order nonlinear elliptic equation in a Lipschitz domain; (2) we update the new free boundary by constructing a mapping that has a fixed point; (3) we establish via the inverse Lagrangian coordinate transformation that the original free interface problem admits a unique piecewise smooth transonic solution near the background state, which consists of a smooth subsonic flow and a smooth supersonic flow with a contact discontinuity. |
资助项目 | National Center for Mathematics and Interdisciplinary Sciences ; AMSS ; CAS ; NSFC[11371349] ; NSFC[11688101] ; NSFC[11801549] ; NSFC[11971024] ; Start-Up Research Grant from Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences[Y8S001104] ; Research Grants Council of the HKSAR, China[CityU 11304817] ; Research Grants Council of the HKSAR, China[CityU 11303518] ; Research Grants Council of the HKSAR, China[CityU 11304820] ; Research Grants Council of the HKSAR, China[CityU 11300021] ; NSF[DMS-1907519] ; NSF[1613213] |
WOS研究方向 | Mathematics ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000698680000001 |
出版者 | SPRINGERNATURE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/59293] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Wang, Dehua |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan 430071, Peoples R China 3.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China 4.Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA 5.City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, Feimin,Kuang, Jie,Wang, Dehua,et al. Stability of Transonic Contact Discontinuity for Two-Dimensional Steady Compressible Euler Flows in a Finitely Long Nozzle[J]. ANNALS OF PDE,2021,7(2):96. |
APA | Huang, Feimin,Kuang, Jie,Wang, Dehua,&Xiang, Wei.(2021).Stability of Transonic Contact Discontinuity for Two-Dimensional Steady Compressible Euler Flows in a Finitely Long Nozzle.ANNALS OF PDE,7(2),96. |
MLA | Huang, Feimin,et al."Stability of Transonic Contact Discontinuity for Two-Dimensional Steady Compressible Euler Flows in a Finitely Long Nozzle".ANNALS OF PDE 7.2(2021):96. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。