A well-conditioned and efficient implementation of dual reciprocity method for Poisson equation
文献类型:期刊论文
作者 | Khan, Suliman1; Khan, M. Riaz2,3; Alqahtani, Aisha M.4; Shah, Hasrat Hussain5; Issakhov, Alibek6,7; Shah, Qayyum8; EI-Shorbagy, M. A.9,10 |
刊名 | AIMS MATHEMATICS
![]() |
出版日期 | 2021 |
卷号 | 6期号:11页码:12560-12582 |
关键词 | dual reciprocity method multiquadrics compactly supported radial basis functions stability analysis condition number Poisson equation |
DOI | 10.3934/math.2021724 |
英文摘要 | One of the attractive and practical techniques to transform the domain integrals to equivalent boundary integrals is the dual reciprocity method (DRM). The success of DRM relies on the proper treatment of the non-homogeneous term in the governing differential equation. For this purpose, radial basis functions (RBFs) interpolations are performed to approximate the non-homogeneous term accurately. Moreover, when the interpolation points are large, the global RBFs produced dense and ill conditioned interpolation matrix, which poses severe stability and computational issues. Fortunately, there exist interpolation functions with local support known as compactly supported radial basis functions (CSRBFs). These functions produce a sparse and well-conditioned interpolation matrix, especially for large-scale problems. Therefore, this paper aims to apply DRM based on multiquadrics (MQ) RBFs and CSRBFs for evaluation of the Poisson equation, especially for large-scale problems. Furthermore, the convergence analysis of DRM with MQ and CSRBFs is performed, along with error estimate and stability analysis. Several experiments are performed to ensure the well-conditioned, efficient, and accurate behavior of the CSRBFs compared to the MQ-RBFs, especially for large-scale interpolation points. |
资助项目 | Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000697908400044 |
出版者 | AMER INST MATHEMATICAL SCIENCES-AIMS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/59371] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Khan, Suliman; Alqahtani, Aisha M. |
作者单位 | 1.Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Univ Chinese Acad Sci, LSEC, Beijing 100190, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, Univ Chinese Acad Sci, ICMSEC, Beijing 100190, Peoples R China 4.Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, Riyadh, Saudi Arabia 5.Balochistan Univ Informat Technol Engn & Manageme, Dept Math Sci, Quetta, Pakistan 6.Al Farabi Kazakh Natl Univ, Dept Math & Comp Modeling, Alma Ata 050040, Kazakhstan 7.Kazakh British Tech Univ, Dept Math & Cybernet, Alma Ata 050000, Kazakhstan 8.Univ Engn & Technol, Dept Basic Sci, Peshawar, Pakistan 9.Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia 10.Menoufia Univ, Fac Engn, Dept Basic Engn Sci, Shibin Al Kawm 32511, Egypt |
推荐引用方式 GB/T 7714 | Khan, Suliman,Khan, M. Riaz,Alqahtani, Aisha M.,et al. A well-conditioned and efficient implementation of dual reciprocity method for Poisson equation[J]. AIMS MATHEMATICS,2021,6(11):12560-12582. |
APA | Khan, Suliman.,Khan, M. Riaz.,Alqahtani, Aisha M..,Shah, Hasrat Hussain.,Issakhov, Alibek.,...&EI-Shorbagy, M. A..(2021).A well-conditioned and efficient implementation of dual reciprocity method for Poisson equation.AIMS MATHEMATICS,6(11),12560-12582. |
MLA | Khan, Suliman,et al."A well-conditioned and efficient implementation of dual reciprocity method for Poisson equation".AIMS MATHEMATICS 6.11(2021):12560-12582. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。