中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Traces of Newton-Sobolev, Haj lasz-Sobolev, and BV functions on metric spaces

文献类型:期刊论文

作者Lahti, Panu1,2; Li, Xining3; Wang, Zhuang4
刊名ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE
出版日期2021
卷号22期号:3页码:1353-1383
ISSN号0391-173X
英文摘要We study the boundary traces of Newton-Sobolev, Haj lasz-Sobolev, and BV (bounded variation) functions. Assuming less regularity of the domain than is usually done in the literature, we show that all of these function classes achieve the same "boundary values", which in particular implies that the trace spaces coincide provided that they exist. Many of our results seem to be new even in Euclidean spaces but we work in a more general complete metric space equipped with a doubling measure and supporting a Poincare inequality.
资助项目NNSF of China[11701582] ; Academy of Finland via Centre of Excellence in Analysis and Dynamics Research[307333] ; Simons Foundation[346300] ; Polish MNiSW fund
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000704984400011
出版者SCUOLA NORMALE SUPERIORE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/59386]  
专题应用数学研究所
通讯作者Lahti, Panu
作者单位1.Univ Augsburg, Inst Math, Univ Str 14, D-86159 Augsburg, Germany
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
3.Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
4.Hunan Normal Univ, Sch Math & Stat, LCSM MOE, Changsha 410081, Peoples R China
推荐引用方式
GB/T 7714
Lahti, Panu,Li, Xining,Wang, Zhuang. Traces of Newton-Sobolev, Haj lasz-Sobolev, and BV functions on metric spaces[J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE,2021,22(3):1353-1383.
APA Lahti, Panu,Li, Xining,&Wang, Zhuang.(2021).Traces of Newton-Sobolev, Haj lasz-Sobolev, and BV functions on metric spaces.ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE,22(3),1353-1383.
MLA Lahti, Panu,et al."Traces of Newton-Sobolev, Haj lasz-Sobolev, and BV functions on metric spaces".ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE 22.3(2021):1353-1383.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。