中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Normalized solutions to Schrodinger systems with linear and nonlinear couplings

文献类型:期刊论文

作者Yun, Zhaoyang1,2; Zhang, Zhitao1,2,3
刊名JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
出版日期2022-02-01
卷号506期号:1页码:19
关键词Nonlinear Schrodinger systems Normalized solutions Ekland variational principle Minimax principle
ISSN号0022-247X
DOI10.1016/j.jmaa.2021.125564
英文摘要In this paper, we study important Schrodinger systems with linear and nonlinear couplings {-Delta u(1) - lambda(1)u(1) = mu(1)vertical bar u(1)vertical bar(p1-2)u(1) + r(1)beta vertical bar u(1)vertical bar(r1-2)vertical bar u(2)vertical bar(r2) + kappa(x)u(2) in R-N, -Delta u(2) - lambda(2)u(2) = mu(2)vertical bar u(2)vertical bar(p2-2)u(2) + r(2) beta vertical bar u(1)vertical bar(r1)vertical bar u(2)vertical bar(r2-2)u(2) + kappa(x)u(1) in R-N u(1) is an element of H-1 (R-N), u(2) is an element of H-1 (R-N), with the condition integral(RN) u(1)(2) - a(1)(2), integral(RN) u(2)(2) - a(2)(2), where N >= 2, mu(1), mu(2), a(1), a(2) > 0, beta is an element of R, 2 < p(1), p(2) < 2*, r(1), r(2) > 1, r(1) + r(2) < 2*,kappa(x) is an element of L-infinity(R-N) with fixed sign and lambda(1), lambda(2) are Lagrangian multipliers. We use Ekland variational principle to prove this system has a normalized radially symmetric solution for L-2-subcritical case when N >= 2, and use minimax method to prove this system has a normalized radially symmetric positive solution for L-2-supercritical case when N = 3, p(1) = p(2) = 4, r(1) = r(2) = 2. (C) 2021 Elsevier Inc. All rights reserved.
资助项目National Natural Science Foundation of China[11771428] ; National Natural Science Foundation of China[12031015] ; National Natural Science Foundation of China[12026217]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000705028400022
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/59422]  
专题中国科学院数学与系统科学研究院
通讯作者Zhang, Zhitao
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
3.Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Yun, Zhaoyang,Zhang, Zhitao. Normalized solutions to Schrodinger systems with linear and nonlinear couplings[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,2022,506(1):19.
APA Yun, Zhaoyang,&Zhang, Zhitao.(2022).Normalized solutions to Schrodinger systems with linear and nonlinear couplings.JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,506(1),19.
MLA Yun, Zhaoyang,et al."Normalized solutions to Schrodinger systems with linear and nonlinear couplings".JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 506.1(2022):19.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。