中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
AN ACCELERATION STRATEGY FOR RANDOMIZE-THEN-OPTIMIZE SAMPLING VIA DEEP NEURAL NETWORKS*

文献类型:期刊论文

作者Yan, Liang1,2; Zhou, Tao3
刊名JOURNAL OF COMPUTATIONAL MATHEMATICS
出版日期2021
卷号39期号:6页码:848-864
关键词Bayesian inverse problems Deep neural network Markov chain Monte Carlo
ISSN号0254-9409
DOI10.4208/jcm.2102-m2020-0339
英文摘要Randomize-then-optimize (RTO) is widely used for sampling from posterior distribu-tions in Bayesian inverse problems. However, RTO can be computationally intensive for complexity problems due to repetitive evaluations of the expensive forward model and its gradient. In this work, we present a novel goal-oriented deep neural networks (DNN) sur-rogate approach to substantially reduce the computation burden of RTO. In particular, we propose to drawn the training points for the DNN-surrogate from a local approximated posterior distribution - yielding a flexible and efficient sampling algorithm that converges to the direct RTO approach. We present a Bayesian inverse problem governed by elliptic PDEs to demonstrate the computational accuracy and efficiency of our DNN-RTO ap-proach, which shows that DNN-RTO can significantly outperform the traditional RTO.
资助项目NSF of China[11771081] ; NSF of China[11822111] ; NSF of China[11688101] ; NSF of China[11731006] ; science challenge project, China[TZ2018001] ; Zhishan Young Scholar Program of SEU, China ; National Key R&D Program of China[2020YFA0712000] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA25000404] ; youth innovation promotion association (CAS), China ; science challenge project[TZ2018001]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000711024000003
出版者GLOBAL SCIENCE PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/59477]  
专题中国科学院数学与系统科学研究院
通讯作者Zhou, Tao
作者单位1.Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
2.Nanjing Ctr Appl Math, Nanjing 211135, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yan, Liang,Zhou, Tao. AN ACCELERATION STRATEGY FOR RANDOMIZE-THEN-OPTIMIZE SAMPLING VIA DEEP NEURAL NETWORKS*[J]. JOURNAL OF COMPUTATIONAL MATHEMATICS,2021,39(6):848-864.
APA Yan, Liang,&Zhou, Tao.(2021).AN ACCELERATION STRATEGY FOR RANDOMIZE-THEN-OPTIMIZE SAMPLING VIA DEEP NEURAL NETWORKS*.JOURNAL OF COMPUTATIONAL MATHEMATICS,39(6),848-864.
MLA Yan, Liang,et al."AN ACCELERATION STRATEGY FOR RANDOMIZE-THEN-OPTIMIZE SAMPLING VIA DEEP NEURAL NETWORKS*".JOURNAL OF COMPUTATIONAL MATHEMATICS 39.6(2021):848-864.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。