中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The Structure of the Observable Algebra Determined by a Hopf *-Subalgebra in Hopf Spin Models

文献类型:期刊论文

作者Wei, Xiaomin1,2; Jiang, Lining2; Xin, Qiaoling3
刊名FILOMAT
出版日期2021
卷号35期号:2页码:485-500
关键词The observable algebra twisted tensor product C*-inductive limit
ISSN号0354-5180
DOI10.2298/FIL2102485W
英文摘要Let H be a finite dimensional Hopf C*-algebra, H-1 a Hopf *-subalgebra of H. This paper focuses on the observable algebra A(H1) determined by H-1 in nonequilibrium Hopf spin models, in which there is a copy of H-1 on each lattice site, and a copy of (H) over cap on each link, where (H) over cap denotes the dual of H. Furthermore, using the iterated twisted tensor product of finite *-algebras, one can prove that the observable algebra A(H1) is *-isomorphic to the C*-inductive limit center dot center dot center dot (sic) H-1 (sic) (H) over cap (sic) H-1 (sic) (H) over cap (sic) H-1 (sic)center dot center dot center dot.
资助项目National Natural Science Foundation of China[11871303] ; National Natural Science Foundation of China[11701423]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000711646100011
出版者UNIV NIS, FAC SCI MATH
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/59489]  
专题中国科学院数学与系统科学研究院
通讯作者Jiang, Lining
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
3.Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
推荐引用方式
GB/T 7714
Wei, Xiaomin,Jiang, Lining,Xin, Qiaoling. The Structure of the Observable Algebra Determined by a Hopf *-Subalgebra in Hopf Spin Models[J]. FILOMAT,2021,35(2):485-500.
APA Wei, Xiaomin,Jiang, Lining,&Xin, Qiaoling.(2021).The Structure of the Observable Algebra Determined by a Hopf *-Subalgebra in Hopf Spin Models.FILOMAT,35(2),485-500.
MLA Wei, Xiaomin,et al."The Structure of the Observable Algebra Determined by a Hopf *-Subalgebra in Hopf Spin Models".FILOMAT 35.2(2021):485-500.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。