中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Algorithms for the metric ring star problem with fixed edge-cost ratio

文献类型:期刊论文

作者Chen, Xujin1,2; Hu, Xiaodong1,2; Jia, Xiaohua3; Tang, Zhongzheng1,2,3; Wang, Chenhao1,2,3; Zhang, Ying4
刊名JOURNAL OF COMBINATORIAL OPTIMIZATION
出版日期2021-10-01
卷号42期号:3页码:499-523
关键词Ring star Approximation algorithms Heuristics Local search Connected facility location
ISSN号1382-6905
DOI10.1007/s10878-019-00418-w
英文摘要We address the metric ring star problem with fixed edge-cost ratio, abbreviated as RSP. Given a complete graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} with a specified depot node d is an element of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in V$$\end{document}, a nonnegative cost function c is an element of R+E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in \mathbb {R}_+<^>E$$\end{document} on E which satisfies the triangle inequality, and an edge-cost ratio M >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ge 1$$\end{document}, the RSP is to locate a ring R=(V ',E ')\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=(V',E')$$\end{document} in G, a simple cycle through d or d itself, aiming to minimize the sum of two costs: the cost for constructing ring R, i.e., M center dot n-ary sumation e is an element of E ' c(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\cdot \sum _{e\in E'}c(e)$$\end{document}, and the cost for attaching nodes in V\V '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V{\setminus } V'$$\end{document} to their closest ring nodes (in R), i.e., n-ary sumation u is an element of V\V ' minv is an element of V ' c(uv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{u\in V{\setminus } V'}\min _{v\in V'}c(uv)$$\end{document}. We show that the singleton ring d is an optimal solution of the RSP when M >=(|V|-1)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ge (|V|-1)/2$$\end{document}. This particularly implies a |V|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{|V|-1}$$\end{document}-approximation algorithm for the RSP with any M >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ge 1$$\end{document}. We present randomized 3-approximation algorithm and deterministic 5.06-approximation algorithm for the RSP, by adapting algorithms for the tour-connected facility location problem (tour-CFLP) and single-source rent-or-buy problem due to Eisenbrand et al. and Williamson and van Zuylen, respectively. Building on the PTAS of Eisenbrand et al. for the tour-CFLP, we give a PTAS for the RSP with |V|/M=O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|/M=O(1)$$\end{document}. We also consider the capacitated RSP (CRSP) which puts an upper limit k on the number of leaf nodes that a ring node can serve, and present a (10+6M/k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(10+6M/k)$$\end{document}-approximation algorithm for this capacitated generalization. Heuristics based on some natural strategies are proposed for both the RSP and CRSP. Simulation results demonstrate that the proposed approximation and heuristic algorithms have good practical performances.
WOS研究方向Computer Science ; Mathematics
语种英语
WOS记录号WOS:000712986900010
出版者SPRINGER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/59539]  
专题应用数学研究所
通讯作者Wang, Chenhao
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
3.City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
4.Beijing Elect Sci & Technol Inst, Beijing 100070, Peoples R China
推荐引用方式
GB/T 7714
Chen, Xujin,Hu, Xiaodong,Jia, Xiaohua,et al. Algorithms for the metric ring star problem with fixed edge-cost ratio[J]. JOURNAL OF COMBINATORIAL OPTIMIZATION,2021,42(3):499-523.
APA Chen, Xujin,Hu, Xiaodong,Jia, Xiaohua,Tang, Zhongzheng,Wang, Chenhao,&Zhang, Ying.(2021).Algorithms for the metric ring star problem with fixed edge-cost ratio.JOURNAL OF COMBINATORIAL OPTIMIZATION,42(3),499-523.
MLA Chen, Xujin,et al."Algorithms for the metric ring star problem with fixed edge-cost ratio".JOURNAL OF COMBINATORIAL OPTIMIZATION 42.3(2021):499-523.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。