PLANAR VORTICES IN A BOUNDED DOMAIN WITH A HOLE
文献类型:期刊论文
作者 | Yan, Shusen1; Yu, Weilin2 |
刊名 | ELECTRONIC RESEARCH ARCHIVE
![]() |
出版日期 | 2021-12-01 |
卷号 | 29期号:6页码:4229-4241 |
关键词 | The Euler flow semilinear elliptic equation variational method free boundary problem reduction |
DOI | 10.3934/era.2021081 |
英文摘要 | In this paper, we consider the inviscid, incompressible planar flows in a bounded domain with a hole and construct stationary classical solutions with single vortex core, which is closed to the hole. This is carried out by constructing solutions to the following semilinear elliptic problem { -Delta psi = lambda(psi - kappa/4 pi ln lambda)(+)(p), in Omega, psi = rho(lambda), on partial derivative O-0, (1) psi = 0, on partial derivative Omega(0), where p > 1, kappa is a positive constant, rho(lambda) is a constant, depending on lambda, Omega = Omega(0) \ O over line 0 and Omega(0), O-0 are two planar bounded simply-connected domains. We show that under the assumption (ln lambda)Sigma < rho(lambda) < (ln lambda)(1-sigma) for some sigma > 0 small, (1) has a solution psi(lambda), whose vorticity set {y is an element of Omega : psi(y)-kappa+rho(lambda)eta(y) > 0} shrinks to the boundary of the hole as lambda -> +infinity. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000719684200030 |
出版者 | AMER INST MATHEMATICAL SCIENCES-AIMS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/59595] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Yan, Shusen |
作者单位 | 1.Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China 2.Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Yan, Shusen,Yu, Weilin. PLANAR VORTICES IN A BOUNDED DOMAIN WITH A HOLE[J]. ELECTRONIC RESEARCH ARCHIVE,2021,29(6):4229-4241. |
APA | Yan, Shusen,&Yu, Weilin.(2021).PLANAR VORTICES IN A BOUNDED DOMAIN WITH A HOLE.ELECTRONIC RESEARCH ARCHIVE,29(6),4229-4241. |
MLA | Yan, Shusen,et al."PLANAR VORTICES IN A BOUNDED DOMAIN WITH A HOLE".ELECTRONIC RESEARCH ARCHIVE 29.6(2021):4229-4241. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。