中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An Implicit Function-Based Adaptive Control Scheme for Noncanonical-Form Discrete-Time Neural-Network Systems

文献类型:期刊论文

作者Zhang, Yanjun1,2; Tao, Gang3; Chen, Mou4; Chen, Wen5; Zhang, Zhengqiang1
刊名IEEE TRANSACTIONS ON CYBERNETICS
出版日期2021-12-01
卷号51期号:12页码:5728-5739
关键词Adaptive control Uncertainty Nonlinear systems Adaptation models Asymptotic stability Stability analysis Adaptive control asymptotic output tracking discrete time (DT) implicit function noncanonical form
ISSN号2168-2267
DOI10.1109/TCYB.2019.2958844
英文摘要This article proposes a new implicit function-based adaptive control scheme for the discrete-time neural-network systems in a general noncanonical form. Feedback linearization for such systems leads to the output dynamics nonlinear dependence on the system states, the control input, and uncertain parameters, which leads to the nonlinear parametrization problem, the implicit relative degree problem, and the difficulty to specify an analytical adaptive controller. To address these problems, we first develop a new adaptive parameter estimation strategy to deal with all uncertain parameters, especially, those of nonlinearly parameterized forms, in the output dynamics. Then, we construct a key implicit function equation using available signals and parameter estimates. By solving the equation, a unique adaptive control law is derived to ensure asymptotic output tracking and closed-loop stability. Alternatively, we design an iterative solution-based adaptive control law which is easy to implement and ensure output tracking and closed-loop stability. The simulation study is given to demonstrate the design procedure and verify the effectiveness of the proposed adaptive control scheme.
资助项目National Key R&D Program of China[2018YFA0703800] ; National Natural Science Foundation of China[61803226] ; National Natural Science Foundation of China[61533009] ; National Natural Science Foundation of China[61873330] ; National Natural Science Foundation of China[61877057] ; Taishan Scholarship Project of Shandong Province[tsqn20161032]
WOS研究方向Automation & Control Systems ; Computer Science
语种英语
WOS记录号WOS:000733232400012
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/59784]  
专题中国科学院数学与系统科学研究院
通讯作者Zhang, Zhengqiang
作者单位1.Qufu Normal Univ, Sch Engn, Qufu 273165, Shandong, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
3.Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22903 USA
4.Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210016, Peoples R China
5.Wayne State Univ, Div Engn Technol, Detroit, MI 48201 USA
推荐引用方式
GB/T 7714
Zhang, Yanjun,Tao, Gang,Chen, Mou,et al. An Implicit Function-Based Adaptive Control Scheme for Noncanonical-Form Discrete-Time Neural-Network Systems[J]. IEEE TRANSACTIONS ON CYBERNETICS,2021,51(12):5728-5739.
APA Zhang, Yanjun,Tao, Gang,Chen, Mou,Chen, Wen,&Zhang, Zhengqiang.(2021).An Implicit Function-Based Adaptive Control Scheme for Noncanonical-Form Discrete-Time Neural-Network Systems.IEEE TRANSACTIONS ON CYBERNETICS,51(12),5728-5739.
MLA Zhang, Yanjun,et al."An Implicit Function-Based Adaptive Control Scheme for Noncanonical-Form Discrete-Time Neural-Network Systems".IEEE TRANSACTIONS ON CYBERNETICS 51.12(2021):5728-5739.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。