Understanding Schubert's Book (III)
文献类型:期刊论文
作者 | Li, Banghe |
刊名 | ACTA MATHEMATICA SCIENTIA
![]() |
出版日期 | 2022-03-01 |
卷号 | 42期号:2页码:437-453 |
关键词 | Hilbert problem 15 enumeration geometry coincidence formula |
ISSN号 | 0252-9602 |
DOI | 10.1007/s10473-022-0201-1 |
英文摘要 | In 13 of Schubert's famous book on enumerative geometry, he provided a few formulas called coincidence formulas, which deal with coincidence points where a pair of points coincide. These formulas play an important role in his method. As an application, Schubert utilized these formulas to give a second method for calculating the number of planar curves in a one dimensional system that are tangent to a given planar curve. In this paper, we give proofs for these formulas and justify his application to planar curves in the language of modern algebraic geometry. We also prove that curves that are tangent to a given planar curve is actually a condition in the space of planar curves and other relevant issues. |
资助项目 | National Center for Mathematics and Interdisciplinary Sciences, CAS |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000750822600001 |
出版者 | SPRINGER |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/59977] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Li, Banghe |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Banghe. Understanding Schubert's Book (III)[J]. ACTA MATHEMATICA SCIENTIA,2022,42(2):437-453. |
APA | Li, Banghe.(2022).Understanding Schubert's Book (III).ACTA MATHEMATICA SCIENTIA,42(2),437-453. |
MLA | Li, Banghe."Understanding Schubert's Book (III)".ACTA MATHEMATICA SCIENTIA 42.2(2022):437-453. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。