中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Understanding Schubert's Book (III)

文献类型:期刊论文

作者Li, Banghe
刊名ACTA MATHEMATICA SCIENTIA
出版日期2022-03-01
卷号42期号:2页码:437-453
关键词Hilbert problem 15 enumeration geometry coincidence formula
ISSN号0252-9602
DOI10.1007/s10473-022-0201-1
英文摘要In 13 of Schubert's famous book on enumerative geometry, he provided a few formulas called coincidence formulas, which deal with coincidence points where a pair of points coincide. These formulas play an important role in his method. As an application, Schubert utilized these formulas to give a second method for calculating the number of planar curves in a one dimensional system that are tangent to a given planar curve. In this paper, we give proofs for these formulas and justify his application to planar curves in the language of modern algebraic geometry. We also prove that curves that are tangent to a given planar curve is actually a condition in the space of planar curves and other relevant issues.
资助项目National Center for Mathematics and Interdisciplinary Sciences, CAS
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000750822600001
出版者SPRINGER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/59977]  
专题中国科学院数学与系统科学研究院
通讯作者Li, Banghe
作者单位Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Banghe. Understanding Schubert's Book (III)[J]. ACTA MATHEMATICA SCIENTIA,2022,42(2):437-453.
APA Li, Banghe.(2022).Understanding Schubert's Book (III).ACTA MATHEMATICA SCIENTIA,42(2),437-453.
MLA Li, Banghe."Understanding Schubert's Book (III)".ACTA MATHEMATICA SCIENTIA 42.2(2022):437-453.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。