中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Connectedness of Kisin varieties associated to absolutely irreducible Galois representations

文献类型:期刊论文

作者Chen, Miaofen1; Nie, Sian2,3
刊名JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
出版日期2022-02-25
页码24
ISSN号0075-4102
DOI10.1515/crelle-2022-0011
英文摘要We consider the Kisin variety associated to an n-dimensional absolutely irreducible mod p Galois representation (rho) over bar of a p-adic field K together with a cocharacter mu. Kisin conjectured that the Kisin variety is connected in this case. We show that Kisin's conjecture holds if K is totally ramified with n = 3 or mu, is of a very particular form. As an application, we get a connectedness result for the deformation ring associated to (rho) over bar of given Hodge-Tate weights. We also give counterexamples to show Kisin's conjecture does not hold in general.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000761301300001
出版者WALTER DE GRUYTER GMBH
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60053]  
专题中国科学院数学与系统科学研究院
通讯作者Chen, Miaofen
作者单位1.East China Normal Univ, Sch Math Sci, Shanghai Key Lab PMMP, 500 Dong Chuan Rd, Shanghai 200241, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, 55 Zhongguancun Rd, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Math Sci, Chinese Acad Sci, 19 A,Yuquan Rd, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Chen, Miaofen,Nie, Sian. Connectedness of Kisin varieties associated to absolutely irreducible Galois representations[J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,2022:24.
APA Chen, Miaofen,&Nie, Sian.(2022).Connectedness of Kisin varieties associated to absolutely irreducible Galois representations.JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,24.
MLA Chen, Miaofen,et al."Connectedness of Kisin varieties associated to absolutely irreducible Galois representations".JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK (2022):24.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。