中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Salient Object Detection Based on Unified Convex Surrogate for Non-Convex Schatten-p Norm

文献类型:期刊论文

作者Li, Min2; Yang, Yu2; Xu, Long1; Xu, Chen2; Sun, Xiaoli2
刊名IEEE ACCESS
出版日期2020
卷号8页码:20171-20180
关键词Low rank and sparsity decomposition non-convex weighted matrix decomposition salient object detection
ISSN号2169-3536
DOI10.1109/ACCESS.2020.2969271
英文摘要Nuclear norm and l 1 norm are the common regularization in salient object detection. However, existing literatures show that these terms either 1) are very slow for large scale problems due to singular value decomposition (SVD) on full matrix in every iteration, or 2) over-penalize the large singular values. In this paper, we propose to use respectively the non-convex weighted Schatten-p quasi-norm and lp -norm (0 < p < 1) for characterizing background and salient object. By matrix factorization, the optimization process, associated with the alternating direction method of multiplier (ADMM), is based on a unified convex surrogate which is only required to handle some small size matrices. Simultaneously, the convergence of algorithm is analyzed and validated. Experimental results indicate the new method usually outperform the state-of-the-art methods.
WOS关键词ALGORITHM
资助项目National Nature Science Foundation of China[61872429] ; National Nature Science Foundation of China[61772343] ; National Nature Science Foundation of China[61972264] ; National Nature Science Foundation of China[61572461] ; National Nature Science Foundation of China[11790305] ; National Nature Science Foundation of Guangdong province[2017A030313354] ; National Nature Science Foundation of Guangdong province[2017A030310628] ; National Nature Science Foundation of Guangdong province[2019A1515010894] ; Shenzhen Basis Research Project[JCYJ20180305125521534] ; Shenzhen Basis Research Project[JCYJ20170818091621856] ; Shenzhen Basis Research Project[JCYJ20170302144838601] ; Interdisciplinary Innovation Team of Shenzhen University
WOS研究方向Computer Science ; Engineering ; Telecommunications
语种英语
WOS记录号WOS:000525390100028
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Nature Science Foundation of China ; National Nature Science Foundation of China ; National Nature Science Foundation of Guangdong province ; National Nature Science Foundation of Guangdong province ; Shenzhen Basis Research Project ; Shenzhen Basis Research Project ; Interdisciplinary Innovation Team of Shenzhen University ; Interdisciplinary Innovation Team of Shenzhen University ; National Nature Science Foundation of China ; National Nature Science Foundation of China ; National Nature Science Foundation of Guangdong province ; National Nature Science Foundation of Guangdong province ; Shenzhen Basis Research Project ; Shenzhen Basis Research Project ; Interdisciplinary Innovation Team of Shenzhen University ; Interdisciplinary Innovation Team of Shenzhen University ; National Nature Science Foundation of China ; National Nature Science Foundation of China ; National Nature Science Foundation of Guangdong province ; National Nature Science Foundation of Guangdong province ; Shenzhen Basis Research Project ; Shenzhen Basis Research Project ; Interdisciplinary Innovation Team of Shenzhen University ; Interdisciplinary Innovation Team of Shenzhen University ; National Nature Science Foundation of China ; National Nature Science Foundation of China ; National Nature Science Foundation of Guangdong province ; National Nature Science Foundation of Guangdong province ; Shenzhen Basis Research Project ; Shenzhen Basis Research Project ; Interdisciplinary Innovation Team of Shenzhen University ; Interdisciplinary Innovation Team of Shenzhen University
源URL[http://ir.bao.ac.cn/handle/114a11/55056]  
专题中国科学院国家天文台
通讯作者Yang, Yu; Xu, Long
作者单位1.Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing 100101, Peoples R China
2.Shenzhen Univ, Coll Math & Stat, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
推荐引用方式
GB/T 7714
Li, Min,Yang, Yu,Xu, Long,et al. Salient Object Detection Based on Unified Convex Surrogate for Non-Convex Schatten-p Norm[J]. IEEE ACCESS,2020,8:20171-20180.
APA Li, Min,Yang, Yu,Xu, Long,Xu, Chen,&Sun, Xiaoli.(2020).Salient Object Detection Based on Unified Convex Surrogate for Non-Convex Schatten-p Norm.IEEE ACCESS,8,20171-20180.
MLA Li, Min,et al."Salient Object Detection Based on Unified Convex Surrogate for Non-Convex Schatten-p Norm".IEEE ACCESS 8(2020):20171-20180.

入库方式: OAI收割

来源:国家天文台

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。