中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Nation-Scale Mapping of Coastal Aquaculture Ponds with Sentinel-1 SAR Data Using Google Earth Engine

文献类型:期刊论文

作者Sun, Zhe; Luo, Juhua; Yang, Jingzhicheng; Yu, Qiuyan; Zhang, Li; Xue, Kun; Lu, Lirong
刊名REMOTE SENSING
出版日期2020
卷号12期号:18
英文摘要Global rapid expansion of the coastal aquaculture industry has made great contributions to enhance food security, but has also caused a series of ecological and environmental issues. Sustainable management of coastal areas requires the explicit and efficient mapping of the spatial distribution of aquaculture ponds. In this study, a Google Earth Engine (GEE) application was developed for mapping coastal aquaculture ponds at a national scale with a novel classification scheme using Sentinel-1 time series data. Relevant indices used in the classification mainly include the water index, texture, and geometric metrics derived from radar backscatter, which were then used to segment and classify aquaculture ponds. Using this approach, we classified aquaculture ponds for the full extent of the coastal area in Vietnam with an overall accuracy of 90.16% (based on independent sample evaluation). The approach, enabling wall-to-wall mapping and area estimation, is essential to the efficient monitoring and management of aquaculture ponds. The classification results showed that aquaculture ponds are widely distributed in Vietnam's coastal area and are concentrated in the Mekong River Delta and Red River delta (85.14% of the total area), which are facing the increasing collective risk of climate change (e.g., sea level rise and salinity intrusion). Further investigation of the classification results also provides significant insights into the stability and deliverability of the approach. The water index derived from annual median radar backscatter intensity was determined to be efficient at mapping water bodies, likely due to its strong response to water bodies regardless of weather. The geometric metrics considering the spatial variation of radar backscatter patterns were effective at distinguishing aquaculture ponds from other water bodies. The primary use of GEE in this approach makes it replicable and transferable by other users. Our approach lays a solid foundation for intelligent monitoring and management of coastal ecosystems.
源URL[http://159.226.73.51/handle/332005/20105]  
专题中国科学院南京地理与湖泊研究所
推荐引用方式
GB/T 7714
Sun, Zhe,Luo, Juhua,Yang, Jingzhicheng,et al. Nation-Scale Mapping of Coastal Aquaculture Ponds with Sentinel-1 SAR Data Using Google Earth Engine[J]. REMOTE SENSING,2020,12(18).
APA Sun, Zhe.,Luo, Juhua.,Yang, Jingzhicheng.,Yu, Qiuyan.,Zhang, Li.,...&Lu, Lirong.(2020).Nation-Scale Mapping of Coastal Aquaculture Ponds with Sentinel-1 SAR Data Using Google Earth Engine.REMOTE SENSING,12(18).
MLA Sun, Zhe,et al."Nation-Scale Mapping of Coastal Aquaculture Ponds with Sentinel-1 SAR Data Using Google Earth Engine".REMOTE SENSING 12.18(2020).

入库方式: OAI收割

来源:南京地理与湖泊研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。