Are nitrous oxide emissions indirectly fueled by input of terrestrial dissolved organic nitrogen in a large eutrophic Lake Taihu, China?
文献类型:期刊论文
作者 | Zhou, Yongqiang; Xiao, Qitao; Zhou, Lei; Jang, Kyoung-Soon; Zhang, Yunlin; Zhang, Mi; Lee, Xuhui; Qin, Boqiang; Brookes, Justin D.; Davidson, Thomas A. |
刊名 | SCIENCE OF THE TOTAL ENVIRONMENT
![]() |
出版日期 | 2020 |
卷号 | 722 |
英文摘要 | yy Lakes actively transform nitrogen (N) and emit disproportionately large amounts of N2O relative to their surface area. Studies have investigated the relative importance of denitrification or nitrification on N2O emissions; however, the linkage between N2O efflux and dissolved organic nitrogen (DON) and carbon (DOC) remains largely unknown. Long-term (2012-2017) seasonal field observations and a series of degradation experiments were used to unravel how DON composition impacts N2O emissions from Lake Taihu, China. In the northwestern part of the lake, large riverine inflow and high N2O emissions occur in all seasons (24.6 +/- 25.2 mu mol m(-2) d(-1)), coincident with high levels of terrestrial DON and DOC here. The degradation of labile DON and DOC likely enhanced ammonification as supported by the correlations between NH4+-N and DON, DOC, a(350), and terrestrial humic-like C3. The area with large riverine inputs in the northwestern part of the lake was characterized by low DOwhichmay enhance incomplete aerobic nitrification and incomplete denitrification, both leading to N2O production. Twenty days laboratory experiments indicated greater N2O production in the northwest inflow samples (N2O on day 20: 120.9 nmol L-1 and 17.3 nmol L-1 for bio- and photo-degradation samples, respectively) compared with the central lake samples (N2O on day 20: 20.3 nmol L-1 and 12.3 nmol L-1 for bio- and photodegradation samples, respectively), despite both having low Chl-a. Our DON and DOC degradation experiments confirmed the occurrence of ammonification along with consumption of NH4+-N and thereafter NO3--N. Our results collectively suggest that terrestrial DON fueled ammonification, enhanced nitrification and incomplete denitrification, and thereby became an important contributor to the N2O efflux from Lake Taihu. (C) 2020 Elsevier B.V. All rights reserved. |
源URL | [http://159.226.73.51/handle/332005/20278] ![]() |
专题 | 中国科学院南京地理与湖泊研究所 |
推荐引用方式 GB/T 7714 | Zhou, Yongqiang,Xiao, Qitao,Zhou, Lei,et al. Are nitrous oxide emissions indirectly fueled by input of terrestrial dissolved organic nitrogen in a large eutrophic Lake Taihu, China?[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2020,722. |
APA | Zhou, Yongqiang.,Xiao, Qitao.,Zhou, Lei.,Jang, Kyoung-Soon.,Zhang, Yunlin.,...&Jeppesen, Erik.(2020).Are nitrous oxide emissions indirectly fueled by input of terrestrial dissolved organic nitrogen in a large eutrophic Lake Taihu, China?.SCIENCE OF THE TOTAL ENVIRONMENT,722. |
MLA | Zhou, Yongqiang,et al."Are nitrous oxide emissions indirectly fueled by input of terrestrial dissolved organic nitrogen in a large eutrophic Lake Taihu, China?".SCIENCE OF THE TOTAL ENVIRONMENT 722(2020). |
入库方式: OAI收割
来源:南京地理与湖泊研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。