Dendritic mesoporous organosilica nanoparticles (DMONs) Chemical composition, structural architecture, and promising applications
文献类型:期刊论文
作者 | Wang, Yabin; Zhang, Baoliang; Ding, Xiuping![]() |
刊名 | NANO TODAY
![]() |
出版日期 | 2021-08 |
卷号 | 39页码:101231 |
ISSN号 | 1748-0132 |
DOI | 10.1016/j.nantod.2021.101231 |
英文摘要 | Dendritic mesoporous organosilica nanoparticles (DMONs) possess three-dimensional (3D) center-radial nanochannels and hierarchical nanopores, which endows themselves with unique structural features and larger pore volumes, more open pore channels, more accessible internal spaces, etc., compared to conventional mesoporous organosilica nanoparticles (MONs). In addition, organic moieties in DMONs skeleton bring about novel biocompatibility, hydrophobicity, and biodegradability, greatly superior to pure inorganic dendritic mesoporous silica nanoparticles (DMSNs) in terms of biochemical applications. Diverse guest species (such as drugs, proteins, or RNA) could be easily loaded onto chemically active sites of the channels' interfaces, achieving their efficient transportation and the subsequent delivery. During the last five years, DMONs have attracted certain degree of attention and experienced non-ignorable development. Therefore, it is necessary and urgent to popularize this brand-new DMONs. To the best of our knowledge, no document has been reported with special focus on its recent progress. For the first time, this comprehensive review provides a critical survey on the synthetic techniques and the corresponding mechanisms of DMONs, DMONs-based particular architectures (like the hollow, core-shell, multi-shelled, etc.), as well as their application domains. Biochemically related applications are emphatically analyzed in the aspects of the design thoughts, manufacturing processes, integrated functionalities, and action mechanisms. It is sincerely expected that this summary and in-depth discussion could give materials scientists and biochemists certain inspiration to accelerate DMONs subject's booming evolution. (c) 2021 Elsevier Ltd. All rights reserved. |
源URL | [http://ir.isl.ac.cn/handle/363002/34311] ![]() |
专题 | 青海盐湖研究所_管理部门 |
推荐引用方式 GB/T 7714 | Wang, Yabin,Zhang, Baoliang,Ding, Xiuping,et al. Dendritic mesoporous organosilica nanoparticles (DMONs) Chemical composition, structural architecture, and promising applications[J]. NANO TODAY,2021,39:101231. |
APA | Wang, Yabin,Zhang, Baoliang,Ding, Xiuping,&Du, Xin.(2021).Dendritic mesoporous organosilica nanoparticles (DMONs) Chemical composition, structural architecture, and promising applications.NANO TODAY,39,101231. |
MLA | Wang, Yabin,et al."Dendritic mesoporous organosilica nanoparticles (DMONs) Chemical composition, structural architecture, and promising applications".NANO TODAY 39(2021):101231. |
入库方式: OAI收割
来源:青海盐湖研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。