中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
小型重水慢化熔盐堆钍铀过渡与安全特性研究

文献类型:学位论文

作者张亚朋
答辩日期2021
文献子类博士
授予单位中国科学院大学(中国科学院上海应用物理研究所)
导师陈金根
关键词钍铀燃料循环 重水慢化熔盐堆 核热耦合 核燃料增殖 钍铀循环过渡
英文摘要熔盐堆采用液态形式燃料,具有流动性,可以实现裂变产物在线去除和~(233)Pa在线提取,被认为是实现钍资源高效利用的理想堆型之一。重水慢化熔盐堆采用液态形式燃料,以重水作为慢化剂,综合了重水堆高中子经济性与传统熔盐堆在线处理、低压运行等优势,同时避免了石墨慢化熔盐堆中石墨由于中子辐照需定期更换所带来的一系列核废料管理问题,是最近提出的一种新概念熔盐堆。小型化反应堆具有低建设成本、高部署灵活性等优势,是未来核能发展的重要堆型之一。鉴于此,本文提出了一种功率为500 MWth的小型重水慢化熔盐堆。围绕该堆型,从堆芯设计、钍铀燃料循环和安全特性分析三方面进行了系统研究。为了获得较好的钍铀增殖性能以及负温度反应性系数以确保反应堆运行安全,本文首先对小型重水慢化熔盐堆的设计目标和准则进行了梳理,并开发出初始临界搜索(critical search calculation code,CSCC)计算模块。以此为基础,通过改变对边距(P)~(5~24)cm和熔盐份额(VF)~(4~28%),对易裂变核素初始装载量、初始转换比(CR)、温度反应性系数(TRC)等目标参数进行了优化。考虑到钍铀燃料增殖和钍铀循环过渡需要,分别选取了三种启堆燃料~(233)U-Th、LEU-Th和TRU-Th(LEU,17.95 wt%~(235)U/U)进行分析,以期获得较好的初始钍铀循环性能。分析结果表明,~(233)U-Th和LEU-Th两种燃料在所选取的Ps和VFs范围内,温度反应性系数均为负。相对而言,当堆芯P及VF分别为20 cm与20%时可获得较好的初始CR以及易裂变核素初始装载量。对于TRU燃料,建议采用较小的P(~5cm)和较大的VF(~24%)的堆芯以获得负的TRC。另外,考虑到熔盐管道对钍铀循环性能的影响,Si C和隔热层的厚度应分别小于2 mm和7 mm。堆外过渡是以现有常规易裂变核素为启堆燃料,在线提取~(233)Pa,并且在堆外衰变为~(233)U(T_(1/2)=27 day)后储存,直到积累足够的~(233)U以启动新堆的钍铀循环过渡方法。由于不需消耗~(233)U,堆外过渡是解决自然界缺乏~(233)U问题的有效途径之一。现有的堆外过渡方案以相同的燃料为启堆燃料和添加燃料(例如LEU),将不可避免引入非易裂变重金属核素,导致堆芯重金属核素浓度升高,从而影响燃料盐化学稳定性与堆芯运行安全,也导致堆芯运行时长受限(为避免重金属核素浓度过度增加)。为此,本文提出了维持重金属浓度不变的改进型堆外过渡方案,其中包括两个阶段。第一阶段,以LEU为启堆燃料,在线添加从轻水堆(LWRs)乏燃料所提取的超铀(TRU)核素维持堆芯临界运行,同时在线提取~(233)Pa。为确保TRC为负值并保持一定的安全裕量,第一阶段运行时间设置为300天。第二阶段将从第一阶段增殖所获得的~(233)U与TRU进行混合,作为添加燃料。分析结果表明,混合燃料可维持堆芯临界安全运行,TRC为负值,并实现钍铀过渡与增殖。与此同时,通过提高混合燃料中~(233)U份额可进一步改善TRC值。当混合燃料中~(233)U的份额设定为15 mol%,只需3年便可获得启动一新堆所需的~(233)U。60年运行,可添加TRU约11,512 kg,堆芯内残留TRU约3,830 kg,消耗TRU 7,680kg,所添加TRU燃料的放射性毒性可降低11%。堆芯稳态和瞬态响应特性是评价堆芯运行是否安全的重要依据。基于重水慢化熔盐堆独特堆芯结构,首先开发了适应于小型重水慢化熔盐堆的核热耦合程序。然后从隔热层厚度、重水流动速度、中子通量分布、熔盐温度分布和重水温度分布等方面对堆芯稳态特性进行了分析。分析结果表明,当隔热层厚度从3 mm减少到1 mm时,重水温度显著增加,综合考虑隔热层厚度对燃料增殖性能影响,建议选取3 mm作为隔热层厚度。在此厚度下,即使当重水速度从0.6 m/s降至0.02 m/s,重水温度从61.5℃升高到90℃,仍低于沸点,处于安全范围内。同时,燃料盐最高出口温度为667℃,低于700℃设计上限。与此同时,针对熔盐入口温度驱动瞬态、重水速度驱动瞬态、熔盐速度驱动瞬态等几种典型瞬态事故工况进行了深入分析。在燃料盐入口驱动瞬态、燃料盐流速驱动瞬态中,重水温度、燃料盐温度、堆芯功率均在安全范围内;对于重水速度驱动瞬态,由于堆芯功率变化较小,重水温度变化主要由重水流速变化所导致,但重水温度均处于安全范围内。上述分析结果表明,所设计的堆芯初步满足安全设计要求。
语种中文
源URL[http://ir.sinap.ac.cn/handle/331007/33857]  
专题中科院上海应用物理研究所2021-2022年
作者单位1.中国科学院上海应用物理研究所
2.中国科学院大学;
推荐引用方式
GB/T 7714
张亚朋. 小型重水慢化熔盐堆钍铀过渡与安全特性研究[D]. 中国科学院大学(中国科学院上海应用物理研究所). 2021.

入库方式: OAI收割

来源:上海应用物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。