辐射法制备有机-无机杂化纳米粒子及其在高分子材料中的应用研究
文献类型:学位论文
作者 | 傅志昂 |
答辩日期 | 2021 |
文献子类 | 博士 |
授予单位 | 中国科学院大学(中国科学院上海应用物理研究所) |
导师 | 李景烨 |
关键词 | 辐射接枝 杂化纳米粒子 二氧化硅 钛酸钡 功能化改性 介电性能 |
英文摘要 | 聚合物基纳米复合材料是由聚合物和无机纳米粒子复合而成的材料体系。纳米复合材料通常具有各组分性能的协同效果。然而大部分无机纳米粒子与聚合物间相容性较差,仅通过简单物理复合难以实现纳米粒子的均匀分散。在无机纳米粒子表面修饰有机组分制备有机-无机纳米杂化粒子是提高组分间相亲性的有效策略。将有机组分通过传统化学手段接枝在纳米粒子表面可以制备有机无机纳米杂化粒子,但面临着明显问题:一方面,此方法要求有机组分与纳米粒子上有可相互反应的基团;另一方面,现有修饰方法所接枝分子的分子量较低,纳米复合材料制备受限。因此,通过简单高效的方法在纳米粒子表面修饰高含量以及高分子量的有机组分具有重要的学术和工业价值。辐射接枝技术是在温和的条件下实现聚合物基体与纳米粒子的共价结合的重要方法。本论文以纳米二氧化硅(SiO_2)与纳米钛酸钡(BT)表面的聚偏氟乙烯(PVDF)改性为研究对象,创新性地提出利用伽马射线共辐射接枝技术,在室温真空氛围中制备有机-无机杂化纳米粒子的策略;并通过替换纳米粒子核,探索了辐射接枝制备杂化纳米粒子的普适性;随后通过杂化纳米粒子与PVDF聚合物基体的共混,探究了不同表面改性对纳米粒子分散性以及纳米复合材料结构与性能的影响;最后将所合成的杂化纳米粒子直接进行熔融加工,制备形成高固体含量的功能纳米复合材料。论文的具体研究内容如下:(1)SiO_2辐射接枝PVDF的制备通过辐射接枝的方法成功地制备了PVDF接枝的SiO_2(F-SiO_2)。系统研究了合成F-SiO_2的化学结构、热稳定性能及结晶行为等,初步探讨了不同反应物投料比与不同吸收剂量对F-SiO_2结构与性能的影响。结果表明,PVDF成功接枝并包覆至SiO_2表面,其接枝含量随PVDF投料比及吸收剂量的增加而提高,但过高的吸收剂量会导致PVDF发生降解。(2)辐射法制备SiO_2杂化纳米粒子与PVDF复合材料结构与性能研究通过熔融加工将不同表面修饰的SiO_2与PVDF进行共混,并改变了纳米粒子在PVDF基体中的添加量,从而研究不同表面修饰SiO_2在基体中的分散性及其与基体间的相互作用。结果表明,辐射法制备的F-SiO_2能够均一分散在PVDF基体中,并能提高复合材料的机械性能,且随着含量的提高,材料的机械性能提高。(3)BT辐射接枝PVDF的制备通过水热合成的方法合成了纳米尺度的钛酸钡(BT)颗粒,运用与制备F-SiO_2相似的辐射接枝方法,成功在BT表面修饰了PVDF长链,构筑了杂化纳米粒子F-BT。结果表明,BT表面PVDF的接枝含量可以根据反应条件进行调控,随着BT表面双键含量、PVDF的投料比以及辐射吸收剂量的提高,PVDF的接枝含量显著提升。(4)辐射法制备BT杂化纳米粒子与PVDF复合材料的结构与性能研究通过熔融加工,将不同表面改性的BT纳米介电陶瓷粒子与PVDF进行共混,制备了具有良好机械性的多功能介电纳米复合材料,并探究了不同表面修饰BT对纳米复合材料结构、机械以及介电性能的影响。研究结果发现,仅有辐射法制备的F-BT能够均匀分散在PVDF基体中,提高复合材料的机械与介电性能,且随着填充含量与PVDF接枝含量的提高,材料性能显著提高。(5)熔融加工制备F-BT杂化纳米粒子柔性介电陶瓷将具有不同表面PVDF接枝含量的F-BT杂化纳米粒子直接进行熔融加工,制备了高BT含量的高介电柔性F-BT陶瓷薄膜。研究发现,F-BT陶瓷薄膜具有良好的介电与机械性能,且随着F-BT表面PVDF接枝含量提高,纳米粒子表面PVDF链缠结程度提升并形成致密网络,F-BT薄膜柔性增强。 |
语种 | 中文 |
源URL | [http://ir.sinap.ac.cn/handle/331007/33878] ![]() |
专题 | 中科院上海应用物理研究所2021-2022年 |
作者单位 | 1.中国科学院上海应用物理研究所 2.中国科学院大学; |
推荐引用方式 GB/T 7714 | 傅志昂. 辐射法制备有机-无机杂化纳米粒子及其在高分子材料中的应用研究[D]. 中国科学院大学(中国科学院上海应用物理研究所). 2021. |
入库方式: OAI收割
来源:上海应用物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。