中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Holomorphic Immersions of Bi-Disks into 9D Real Hypersurfaces with Levi Signature (2,2)

文献类型:期刊论文

作者Foo, Wei Guo2; Merker, Joel1
刊名INTERNATIONAL MATHEMATICS RESEARCH NOTICES
出版日期2022-03-23
卷号2022期号:7页码:5466-5505
ISSN号1073-7928
DOI10.1093/imrn/rnaa266
英文摘要Inspired by an article of R. Bryant on holomorphic immersions of unit disks into Lorentzian CR manifolds, we discuss the application of Cartan's method to the question of the existence of bi-disk D-2 in a smooth 9D real-analytic real hypersurface M-9 subset of C-5 with Levi signature (2, 2) passing through a fixed point. The result is that the lift to M-9 x U(2) of the image of the bi-disk in M-9 must lie in the zero set of two complex-valued functions in M-9 x U(2). We then provide an example where one of the functions does not identically vanish, thus obstructing holomorphic immersions.
资助项目Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences[11688101]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000773012300016
出版者OXFORD UNIV PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60248]  
专题中国科学院数学与系统科学研究院
通讯作者Foo, Wei Guo
作者单位1.Univ Paris Saclay, Univ Paris Sud, Ctr Natl Rech Sci, Lab Math Orsay, F-91405 Orsay, France
2.Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Foo, Wei Guo,Merker, Joel. Holomorphic Immersions of Bi-Disks into 9D Real Hypersurfaces with Levi Signature (2,2)[J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES,2022,2022(7):5466-5505.
APA Foo, Wei Guo,&Merker, Joel.(2022).Holomorphic Immersions of Bi-Disks into 9D Real Hypersurfaces with Levi Signature (2,2).INTERNATIONAL MATHEMATICS RESEARCH NOTICES,2022(7),5466-5505.
MLA Foo, Wei Guo,et al."Holomorphic Immersions of Bi-Disks into 9D Real Hypersurfaces with Levi Signature (2,2)".INTERNATIONAL MATHEMATICS RESEARCH NOTICES 2022.7(2022):5466-5505.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。