中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Nitsche Hybrid Multiscale Method with Non-matching Grids

文献类型:期刊论文

作者Ming, Pingbing1,2; Song, Siqi1,2
刊名JOURNAL OF SCIENTIFIC COMPUTING
出版日期2022-05-01
卷号91期号:2页码:28
关键词Multiscale PDE Hybrid method Nitsche variational formulation Non-matching grid
ISSN号0885-7474
DOI10.1007/s10915-022-01817-8
英文摘要We propose a Nitsche method for multiscale partial differential equations, which retrieves the macroscopic information and the local microscopic information at one stroke. We prove the convergence of the method for second order elliptic problem with bounded and measurable coefficients. The rate of convergence may be derived for coefficients with further structures such as periodicity and ergodicity. Extensive numerical results confirm the theoretical predictions.
资助项目National Natural Science Foundation of China[11971467]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000776088200002
出版者SPRINGER/PLENUM PUBLISHERS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/60257]  
专题中国科学院数学与系统科学研究院
通讯作者Ming, Pingbing
作者单位1.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, AMSS, LSEC, 55 East Rd Zhong Guan Cun, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Ming, Pingbing,Song, Siqi. A Nitsche Hybrid Multiscale Method with Non-matching Grids[J]. JOURNAL OF SCIENTIFIC COMPUTING,2022,91(2):28.
APA Ming, Pingbing,&Song, Siqi.(2022).A Nitsche Hybrid Multiscale Method with Non-matching Grids.JOURNAL OF SCIENTIFIC COMPUTING,91(2),28.
MLA Ming, Pingbing,et al."A Nitsche Hybrid Multiscale Method with Non-matching Grids".JOURNAL OF SCIENTIFIC COMPUTING 91.2(2022):28.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。